69 research outputs found

    A chemical model for the atmosphere of hot Jupiters

    Get PDF
    Our purpose is to release a chemical network, and the associated rate coefficients, developed for the temperature and pressure range relevant to hot Jupiters atmospheres. Using this network, we study the vertical atmospheric composition of the two hot Jupiters (HD209458b, HD189733b) with a model that includes photolyses and vertical mixing and we produce synthetic spectra. The chemical scheme is derived from applied combustion models that have been methodically validated over a range of temperatures and pressures typical of the atmospheric layers influencing the observations of hot Jupiters. We compare the predictions obtained from this scheme with equilibrium calculations, with different schemes available in the literature that contain N-bearing species and with previously published photochemical models. Compared to other chemical schemes that were not subjected to the same systematic validation, we find significant differences whenever non-equilibrium processes take place. The deviations from the equilibrium, and thus the sensitivity to the network, are more important for HD189733b, as we assume a cooler atmosphere than for HD209458b. We found that the abundances of NH3 and HCN can vary by two orders of magnitude depending on the network, demonstrating the importance of comprehensive experimental validation. A spectral feature of NH3 at 10.5μ\mum is sensitive to these abundance variations and thus to the chemical scheme. Due to the influence of the kinetics, we recommend the use of a validated scheme to model the chemistry of exoplanet atmospheres. Our network is robust for temperatures within 300-2500K and pressures from 10mbar up to a few hundreds of bars, for species made of C,H,O,N. It is validated for species up to 2 carbon atoms and for the main nitrogen species.Comment: 20 pages, 10 figures. Accepted for publication in Astronomy & Astrophysic

    Photodissociation and photoionisation of atoms and molecules of astrophysical interest

    Full text link

    Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes

    No full text
    Wuxiao Ding, Hiroyuki Minamikawa, Naohiro Kameta, Toshimi Shimizu, Mitsutoshi Masuda Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan Abstract: Application of organic nanotubes (ONTs) into drug nanocarriers ultimately requires validation in live animals. For improving the dispersibility in biological media and in vivo distribution, the outer surface of an ONT was functionalized with polyethylene glycol (PEG) via the coassembly of an ONT-forming lipid with 5–20 mol% of a PEG-tethered lipid analogue (PEG-lipid). Firstly, the effect of PEGylation on the psysicochemical properties of ONTs, such as morphology and dispersibility, was investigated. PEGylation of ONTs slightly reduced the average length and effectively prevented the aggregation in phosphate-buffered saline (PBS). The PEGylated ONTs even showed high thermal stability in aqueous dispersion at least up to 95°C. Secondly, differential scanning calorimetry and powder X-ray diffraction indicated that ~10 mol% of PEG-lipid was completely incorporated into the ONTs, while 20 mol% of PEG-lipid encountered a partial phase separation during coassembly. In the heating differential scanning calorimetry runs, the resultant PEGylated ONTs with 5 mol% PEG-lipid showed no sign of phase separation up to 180°C under lyophilized condition, while those with 10 mol% and 20 mol% PEG-lipid showed some phase separation of the PEG-lipid above 120°C. Finally, PEGylation significantly affected the tissue distribution and prolonged the persistence time in the blood in mice. Non-PEGylated ONTs was quickly cleared from the circulation after intravenous infusion and preferentially accumulated in the lung, while PEGylated ONTs was mainly trapped in the liver and could circulate in the blood up to 24 hours. This study provided valuable information of physicochemical properties and the in vivo distribution behavior of PEGylated ONTs for their potential application into drug nanocarriers. Keywords: nanostructure, dispersibility, distributio
    corecore