166 research outputs found
Development and evaluation of a novel herbal formula for tobacco cessation in nicotine addicted rat model
381-388Tobacco addiction is a major cause of disabilities and premature death. Numerous therapies for de-addiction are available; however, nicotine dependence and withdrawal symptoms pose problems for addicts. Here, we developed novel herbal formulations using natural plant parts and evaluated for de-addiction of nicotine. Parts of Withania somnifera (L.) Dunal, Avena sativa L., Cinnamomum cassia Blume, Acacia catechu (L.f.)Willd., Ocimum tenuiflorum L. and Glycyrrhiza glabra L. were formulated in three formulations containing alcohol extracts (AELF), aqueous extracts (WELF) and powdered herbs (PHLF). Swiss albino Wistar rats were addicted with nicotine 10 mg/kg/day for first five days and 20 mg/kg/day for next 10 days subcutaneously. Control rats were administered with 0.9% NaCl (Group VII) and addicted animals were treated with bupropion, 40 mg/kg, p.o. (Group I), rid-tobak, 200 mg/kg, p.o. (Group II), AELF, 200 mg/kg, p.o. (Group III), WELF, 200 mg/kg, p.o. (Group IV), PHLF, 200 mg/kg, p.o. (Group V), 0.5% sodium carboxymethyl cellulose, p.o. (Group VI) for 15 days. The animals were subjected to Y-maze test, swimming endurance test, behavioural studies on Day 0, 1, 6, 11 and on Day 16 after withdrawal of nicotine. On Day16, brain dopamine and serum cortisol levels were measured. Rats treated with AELF and PHLF showed significant improvement in behavioural parameters, increased brain dopamine level and decreased serum cortisol levels thus being a promising choice for tobacco cessation
Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats
BACKGROUND: Terminalia chebula (Combretaceae) has been widely used in Ayurveda for the treatment of diabetes. In the present investigation, the chloroform extract of T. chebula seed powder was investigated for its antidiabetic activity in streptozotocin-induced diabetic rats using short term and long term study protocols. The efficacy of the extract was also evaluated for protection of renal functions in diabetic rats. METHODS: The blood glucose lowering activity of the chloroform extract was determined in streptozotocin-induced (75 mg/kg, i.p.; dissolved in 0.1 M acetate buffer; pH 4.5) diabetic rats, after oral administration at the doses of 100, 200 and 300 mg/kg in short term study. Blood samples were collected from the eye retro-orbital plexus of rats before and also at 0.5, 1, 2, 4, 6, 8 and 12 h after drug administration and the samples were analyzed for blood glucose by using glucose-oxidase/peroxidase method using a visible spectrophotometer. In long term study, the extract (300 mg/kg) was administered to streptozotocin-induced diabetic rats, daily for 8 weeks. Blood glucose was measured at weekly intervals for 4 weeks. Urine samples were collected before the induction of diabetes and at the end of 8 weeks of treatments and analyzed for urinary protein, albumin and creatinine levels. The data was compared statistically using one-way ANOVA with post-hoc Dunnet's t-test. RESULTS: The chloroform extract of T. chebula seeds produced dose-dependent reduction in blood glucose of diabetic rats and comparable with that of standard drug, glibenclamide in short term study. It also produced significant reduction in blood glucose in long term study. Significant renoprotective activity is observed in T. chebula treated rats. The results indicate a prolonged action in reduction of blood glucose by T. chebula and is probably mediated through enhanced secretion of insulin from the β-cells of Langerhans or through extra pancreatic mechanism. The probable mechanism of potent renoprotective actions of T. chebula has to be evaluated. CONCLUSION: The present studies clearly indicated a significant antidiabetic and renoprotective effects with the chloroform extract of T. chebula and lend support for its traditional usage. Further investigations on identification of the active principles and their mode of action are needed to unravel the molecular mechanisms involved in the observed effects
Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2
Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool known to date
MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?
Representative images of “Comets” and the corresponding intensity profiles, showing (i) ~ 5% Tail DNA damage, typical of the NSCLC cells treated with no siRNA or scramble siRNA, and analysed by regular Fpg-modified alkaline comet assay (0.8 U Fpg/gel); and (ii) comets showing ~ 10% tail DNA, typical of the NSCLC cells treated with MTH1 siRNA. Superimposed on the Comet images are the image analysis software (Komet 5.5, Andor Technology) determined boundaries demarcating the ‘Comet head’ (pink circle) and ‘tail extent’ (vertical orange line) (Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, et al. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 2006;25(56):7336–7342). % tail DNA = 100 - % head DNA; % head DNA = (integrated optical head intensity / (integrated optical head intensity + integrated optical tail intensity)) × 100. (PDF 1431 kb
Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress
<p>Abstract</p> <p>Background</p> <p>Widespread use of chromium (Cr) contaminated fields due to careless and inappropriate management practices of effluent discharge, mostly from industries related to metallurgy, electroplating, production of paints and pigments, tanning, and wood preservation elevates its concentration in surface soil and eventually into rice plants and grains. In spite of many previous studies having been conducted on the effects of chromium stress, the precise molecular mechanisms related to both the effects of chromium phytotoxicity, the defense reactions of plants against chromium exposure as well as translocation and accumulation in rice remain poorly understood.</p> <p>Results</p> <p>Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. To check whether the Cr-specific motifs were indeed significantly over represented in the promoter regions of Cr-responsive genes, occurrence of these motifs in whole genome sequence was carried out. In the background of whole genome, the lift value for these 14 and 13 motifs was significantly high in the test dataset. Though no functional role has been assigned to any of the motifs, but all of these are present as promoter motifs in the Database of orthologus promoters.</p> <p>Conclusion</p> <p>These findings clearly suggest that a complex network of regulatory pathways modulates Cr-response of rice. The integrated matrix of both transcriptome and metabolome data after suitable normalization and initial calculations provided us a visual picture of the correlations between components. Predominance of different motifs in the subsets of genes suggests the involvement of motif-specific transcription modulating proteins in Cr stress response of rice.</p
An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater
Microalgae have high nutritional values for aquatic organisms compared to fish meal, because microalgae cells are rich in proteins, lipids, and carbohydrates. However, the high cost for the commercial production of microalgae biomass using fresh water or artificial media limits its use as fish feed. Few studies have investigated the potential of wet market wastewater and slaughterhouse wastewater for the production of microalgae biomass. Hence, this study aims to highlight the potential of these types of wastewater as an alternative superior medium for microalgae biomass as they contain high levels of nutrients required for microalgae growth. This paper focuses on the benefits of microalgae biomass produced during the phycore-mediation of wet market wastewater and slaughterhouse wastewater as fish feed. The extraction techniques for lipids and proteins as well as the studies conducted on the use of microalgae biomass as fish feed were reviewed. The results showed that microalgae biomass can be used as fish feed due to feed utilisation efficiency, physiological activity, increased resistance for several diseases, improved stress response, and improved protein retention
Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.
Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments
Cancer Biomarker Discovery: The Entropic Hallmark
Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
- …