2,012 research outputs found
Anorectal malformations
Anorectal malformations comprise a wide spectrum of diseases, which can affect boys and girls, and involve the distal anus and rectum as well as the urinary and genital tracts. They occur in approximately 1 in 5000 live births. Defects range from the very minor and easily treated with an excellent functional prognosis, to those that are complex, difficult to manage, are often associated with other anomalies, and have a poor functional prognosis. The surgical approach to repairing these defects changed dramatically in 1980 with the introduction of the posterior sagittal approach, which allowed surgeons to view the anatomy of these defects clearly, to repair them under direct vision, and to learn about the complex anatomic arrangement of the junction of rectum and genitourinary tract. Better imaging techniques, and a better knowledge of the anatomy and physiology of the pelvic structures at birth have refined diagnosis and initial management, and the analysis of large series of patients allows better prediction of associated anomalies and functional prognosis. The main concerns for the surgeon in correcting these anomalies are bowel control, urinary control, and sexual function. With early diagnosis, management of associated anomalies and efficient meticulous surgical repair, patients have the best chance for a good functional outcome. Fecal and urinary incontinence can occur even with an excellent anatomic repair, due mainly to associated problems such as a poorly developed sacrum, deficient nerve supply, and spinal cord anomalies. For these patients, an effective bowel management program, including enema and dietary restrictions has been devised to improve their quality of life
catena-Poly[lead(II)-bis(μ-2-amino-1,3-benzothiazole-6-carboxylato)]
The title complex, [Pb(C8H5N2O2S)2]n, consists of one PbII ion located on a crystallographic twofold axis and two symmetry-related 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) ligands. The central PbII ion has a (4 + 2) coordination by four O atoms of the two ABTC ligands and two weaker Pb—S bonding interactions (Pb—S secondary bonds) from S atoms of other two neighbouring ABTC ligands. These bonds link the metal ions into zigzag chains along the c axis, which, in turn, aggregate through π–π interactions [centroid–centroid distance = 3.7436 Å] between ABTC rings and N—H⋯O and N—H⋯N hydrogen bonds
Cell cycle regulation and novel structural features of thymidine kinase, an essential enzyme in Trypanosoma brucei
Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2′-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design
Sphincter saving anorectoplasty (SSARP) for the reconstruction of Anorectal malformations
<p>Abstract</p> <p>Background</p> <p>This report describes a new technique of sphincter saving anorectoplasty (SSARP) for the repair of anorectal malformations (ARM).</p> <p>Methods</p> <p>Twenty six males with high ARM were treated with SSARP. Preoperative localization of the center of the muscle complex is facilitated using real time sonography and computed tomography. A soft guide wire is inserted under image control which serves as the route for final pull through of bowel. The operative technique consists of a subcoccygeal approach to dissect the blind rectal pouch. The separation of the rectum from the fistulous communication followed by pull through of the bowel is performed through the same incision. The skin or the levators in the midline posteriorly are not divided. Postoperative anorectal function as assessed by clinical Wingspread scoring was judged as excellent, good, fair and poor. Older patients were examined for sensations of touch, pain, heat and cold in the circumanal skin and the perineum. Electromyography (EMG) was done to assess preoperative and postoperative integrity of external anal sphincter (EAS).</p> <p>Results</p> <p>The patients were separated in 2 groups. The first group, Group I (n = 10), were newborns in whom SSARP was performed as a primary procedure. The second group, Group II (n = 16), were children who underwent an initial colostomy followed by delayed SSARP. There were no operative complications. The follow up ranged from 4 months to 18 months. Group I patients have symmetric anal contraction to stimulation and strong squeeze on digital rectal examination with an average number of bowel movements per day was 3–5. In group II the rate of excellent and good scores was 81% (13/16). All patients have an appropriate size anus and regular bowel actions. There has been no rectal prolapse, or anal stricture. EAS activity and perineal proprioception were preserved postoperatively. Follow up computed tomogram showed central placement the pull through bowel in between the muscle complex.</p> <p>Conclusion</p> <p>The technique of SSARP allows safe and anatomical reconstruction in a significant proportion of patients with ARM's without the need to divide the levator plate and muscle complex. It preserves all the components contributing to superior faecal continence, and avoids the potential complications associated with the open posterior sagittal approach.</p
The effect of long-term homocysteine-lowering on carotid intima-media thickness and flow-mediated vasodilation in stroke patients: a randomized controlled trial and meta-analysis
<p>Abstract</p> <p>Background</p> <p>Experimental and epidemiological evidence suggests that homocysteine (tHcy) may be a causal risk factor for atherosclerosis. B-vitamin supplements reduce tHcy and improve endothelial function in short term trials, but the long-term effects of the treatment on vascular structure and function are unknown.</p> <p>Methods</p> <p>We conducted a sub-study of VITATOPS, a randomised, double-blind, placebo-controlled intervention trial designed to test the efficacy of long term B-vitamin supplementation (folic acid 2 mg, vitamin B<sub>6 </sub>25 mg and vitamin B<sub>12 </sub>0.5 mg) in the prevention of vascular events in patients with a history of stroke. We measured carotid intima-medial thickness (CIMT) and flow-mediated dilation (FMD) at least two years after randomisation in 162 VITATOPS participants. We also conducted a systematic review and meta-analysis of studies designed to test the effect of B-vitamin treatment on CIMT and FMD.</p> <p>Results</p> <p>After a mean treatment period of 3.9 ± 0.9 years, the vitamin-treated group had a significantly lower mean plasma homocysteine concentration than the placebo-treated group (7.9 μmol/L, 95% CI 7.5 to 8.4 versus 11.8 μmol/L, 95% CI 10.9 to 12.8, p < 0.001). Post-treatment CIMT (0.84 ± 0.17 mm vitamins versus 0.83 ± 0.18 mm placebo, p = 0.74) and FMD (median of 4.0%, IQR 0.9 to 7.2 vitamins versus 3.0%, IQR 0.6 to 6.6 placebo, p = 0.48) did not differ significantly between groups. A meta-analysis of published randomised data, including those from the current study, suggested that B-vitamin supplements should reduce CIMT (-0.10 mm, 95% CI -0.20 to -0.01 mm) and increase FMD (1.4%, 95% CI 0.7 to 2.1%). However, the improvement in endothelial function associated with homocysteine-lowering treatment was significant in short-term studies but not in longer trials.</p> <p>Conclusion</p> <p>Although short-term treatment with B-vitamins is associated with increased FMD, long-term homocysteine-lowering did not significantly improve FMD or CIMT in people with a history of stroke.</p> <p>Trial Registration</p> <p>Clinical Trial Registration URL: <url>http://www.actr.org.au/</url></p> <p>Trial Registration number: 12605000005651</p
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Histamine Derived from Probiotic Lactobacillus reuteri Suppresses TNF via Modulation of PKA and ERK Signaling
Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases
Gene Expression and Functional Studies of the Optic Nerve Head Astrocyte Transcriptome from Normal African Americans and Caucasian Americans Donors
To determine whether optic nerve head (ONH) astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA) donors compared to astrocytes from normal Caucasian American (CA) donors.We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips) to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA) in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM). Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH) assay detected levels of intracellular GSH.Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01). The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion.These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA
Liver-Specific Commd1 Knockout Mice Are Susceptible to Hepatic Copper Accumulation
Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1Δhep) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1Δhep mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1Δhep mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1Δhep mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1Δhep mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1Δhep mice could be detected. Despite the absence of hepatocellular toxicity in Commd1Δhep mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis
- …