20 research outputs found

    Acute bronchiolitis in infancy as risk factor for wheezing and reduced pulmonary function by seven years in Akershus County, Norway

    Get PDF
    BACKGROUND: Acute viral bronchiolitis is one of the most common causes of hospitalisation during infancy in our region with respiratory syncytial virus (RSV) historically being the major causative agent. Many infants with early-life RSV bronchiolitis have sustained bronchial hyperreactivity for many years after hospitalisation and the reasons for this are probably multifactorial. The principal aim of the present study was to investigate if children hospitalised for any acute viral bronchiolitis during infancy in our region, and not only those due to RSV, had more episodes of subsequent wheezing up to age seven years and reduced lung function at that age compared to children not hospitalised for acute bronchiolitis during infancy. A secondary aim was to compare the hospitalised infants with proven RSV bronchiolitis (RS+) to the hospitalised infants with non-RSV bronchiolitis (RS-) according to the same endpoints. METHODS: 57 infants hospitalised at least once with acute viral bronchiolitis during two consecutive winter seasons in 1993–1994 were examined at age seven years. An age-matched control group of 64 children, who had not been hospitalised for acute viral bronchiolitis during infancy, were recruited from a local primary school. Epidemiological and clinical data were collected retrospectively from hospital discharge records and through structured clinical interviews and physical examinations at the follow-up visit. RESULTS: The children hospitalised for bronchiolitis during infancy had decreased lung function, more often wheezing episodes, current medication and follow-up for asthma at age seven years than did the age matched controls. They also had lower average birth weight and more often first order family members with asthma. We did not find significant differences between the RSV+ and RSV- groups. CONCLUSION: Children hospitalised for early-life bronchiolitis are susceptible to recurrent wheezing and reduced pulmonary function by seven years compared to age-matched children not hospitalised for early-life bronchiolitis. We propose that prolonged bronchial hyperreactivity could follow early-life RSV negative as well as RSV positive bronchiolitis

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    Binary Black Hole Mergers in the first Advanced LIGO Observing Run

    Get PDF
    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M100 M_\odot and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ5\sigma over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9240Gpc3yr19-240 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections

    Observation of Gravitational Waves from a Binary Black Hole Merger

    Get PDF
    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410þ160 −180 Mpc corresponding to a redshift z ¼ 0.09þ0.03 −0.04 . In the source frame, the initial black hole masses are 36þ5 −4M⊙ and 29þ4 −4M⊙, and the final black hole mass is 62þ4 −4M⊙, with 3.0þ0.5 −0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Allopatric speciation in the desert: diversification of cichlids at their geographical and ecological range limit in Iran

    No full text
    Cichlids are textbook examples for rapid diversification and high species diversity. While in South America, several hundred and in Africa, more than 1500 species of cichlid fish have been described, only one single cichlid species, Iranocichla hormuzensis Coad 1982, was known from Iran, the easternmost range margin of the species-rich African cichlids (Cichlidae: Pseudocrenilabrinae). The aim of our paper was to assess the genetic and phenotypic diversity among populations of Iranocichla across most of its geographical range in Southern Iran. For this, we sequenced two mitochondrial genes and collected color observation of male nuptial coloration in different habitats. Besides conspicuous differences in male nuptial coloration, we found considerable genetic differentiation among Iranocichla populations pointing to the existence of at least two allopatric species, with no evidence of more than one species at one site. Diversification within Iranocichla started, based on our data, in the middle or late Pleistocene and was followed by further population differentiation and bottlenecks during isolation events in the last glacial maximum. Population dispersal leading to the population structure observed today most likely occurred in the course of the early Holocene sea-level rise
    corecore