8 research outputs found

    RAFT polymerization and thiol chemistry: A complementary pairing for implementing modern macromolecular design

    Get PDF
    Reversible addition fragmentation chain transfer (RAFT) polymerization is one of the most extensively studied reversible deactivation radical polymerization methods for the production of well-defined polymers. After polymerization, the RAFT agent end-group can easily be converted into a thiol, opening manifold opportunities for thiol modification reactions. This review is focused both on the introduction of functional end-groups using well-established methods, such as thiol-ene chemistry, as well as on creating bio-cleavable disulfide linkages via disulfide exchange reactions. We demonstrate that thiol modification is a highly attractive and efficient chemistry for modifying RAFT polymers

    End group reactions of RAFT-Prepared (Co)polymers

    Get PDF
    This review highlights the chemistry of thiocarbonylthio groups with an emphasis on chemistry conducted at ω or α and ω chain-ends in copolymers prepared by reversible addition–fragmentation chain-transfer (RAFT) radical polymerization. We begin by giving a general overview of reactions associated with the thiocarbonylthio groups, followed by examples associated with macromolecular thiols

    Polymer Analogous Reactions

    No full text
    Polymer analogous reactions represent a synthetically very appealing approach for the synthesis of functional polymers. Different synthetic concepts of organic reactions are merging in polymer science leading toward the synthesis of architecturally well-defined multifunctional polymers. The different classes of reactions provide the synthetic polymer chemist with tools of unprecedented precision, thereby opening the doors for materials synthesis in an interdisciplinary world

    Histoplasmosis

    No full text

    The role of T cells in age-related diseases

    No full text

    Soil and water threats in a changing environment

    No full text
    corecore