176 research outputs found
PENGARUH KARAKTERISTIK KELOMPOK DAN KARAKTERISTIK PEKERJAAN TERHADAP KINERJA KARYAWAN CV. CROSSLINE PRODUCTION PALEMBANG
This research is basically discuss the influence of group characteristic and work characteristic on employee performance at CV. Crossline Production Palembang by using quantitative data analysis which are correlation coefficient analysis, coefficient of determination, hypotheses testing of statistic t-tests, and statistic F-tests. The sample of this research is all the employees of CV. Crossline Production Palembang, that are 30 people.Regression coefficient value for competency variable (X1) is 0,001 and work culture variable (X2) is 0,000 with level of significance 5%, these produce constant value at 1,190. So, the regression equation used in this research isY = 1,190 + 0,255x1 + 0,726x2 + e.The test result in this research indicate that group characteristic and work characteristic have positive effect on employee performance simultaneously. Those independent variables have effect too on employee performance partially. The amount of coefficient of determination (Adjusted R Square) at 0,831 show that independent variables (group characteristic and work characteristic) have effect on dependent variable (employee performance) at 83,1%, while the rest is effected by other variables that are not use in this research. Keywords:Characteristic,Employee, Performanc
Checklist of Plant Species on the Peucang Island (Ujung Kulon Nature Reserve, West Java)
The Peucang Island is situated just off westernmost tip of West Java and is a portion of the Ujung Kulon Nature Reserve.It covers a total area of 450 hectares,comprising the level land and a ridge in the central portion with the highest point of about 30 m above sea level.Geologically this island is composed of Tertiary materials and alluvial materials on southern and eastern coastal areas (Verbeek and Fennema 1896).From the southeastern shore towards the hills, there are three types of soil, i.e. the sandy regosols, the tuffaceous over sandy regosols and the latosolized tuffaceous regosols over podsolized grumusols (Soerianegara 1969)
A phylogenetic classification of the world’s tropical forests
Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests
The number of tree species on Earth
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
Co-limitation towards lower latitudes shapes global forest diversity gradients
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
Native diversity buffers against severity of non-native tree invasions
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5–7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
The global biogeography of tree leaf form and habit
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
The number of tree species on Earth.
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
- …