2,037 research outputs found

    Effective Field Theory for Bound State Reflection

    Full text link
    Elastic quantum bound-state reflection from a hard-wall boundary provides direct information regarding the structure and compressibility of quantum bound states. We discuss elastic quantum bound-state reflection and derive a general theory for elastic reflection of shallow dimers from hard-wall surfaces using effective field theory. We show that there is a small expansion parameter for analytic calculations of the reflection scattering length. We present a calculation up to second order in the effective Hamiltonian in one, two, and three dimensions. We also provide numerical lattice results for all three cases as a comparison with our effective field theory results. Finally, we provide an analysis of the compressibility of the alpha particle confined to a cubic lattice with vanishing Dirichlet boundaries.Comment: 43 pages, 9 figures, 16 tables, published versio

    Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep

    Get PDF
    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep

    Transport in three-dimensional topological insulators: theory and experiment

    Full text link
    This article reviews recent theoretical and experimental work on transport due to the surface states of three-dimensional topological insulators. The theoretical focus is on longitudinal transport in the presence of an electric field, including Boltzmann transport, quantum corrections and weak localization, as well as longitudinal and Hall transport in the presence of both electric and magnetic fields and/or magnetizations. Special attention is paid to transport at finite doping, to the π\pi-Berry phase, which leads to the absence of backscattering, Klein tunneling and half-quantized Hall response. Signatures of surface states in ordinary transport and magnetotransport are clearly identified. The review also covers transport experiments of the past years, reviewing the initial obscuring of surface transport by bulk transport, and the way transport due to the surface states has increasingly been identified experimentally. Current and likely future experimental challenges are given prominence and the current status of the field is assessed.Comment: Review article to appear in Physica

    Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level

    Get PDF
    We demonstrate the use of a double-beam optical tweezers system to stabilize red blood cell (RBC) orientation in the optical tweezers during measurements of elastic light scattering from the trapped cells in an angle range of 5-30 degrees. Another laser (He-Ne) was used to illuminate the cell and elastic light scattering distribution from the single cell was measured with a goniometer and a photomultiplier tube. Moreover, CCD camera images of RBCs with and without laser illumination are presented as complementary information. Light scattering from a RBC was measured in different fixed orientations. Light scattering from cells was also measured when the length of the cell was changed in two different orientations. Light scattering measurements from spherical and crenate RBCs are described and the results are compared with other cell orientations. Analysis shows that the measured elastic light scattering distributions reveal changes in the RBC’s orientation and shape. The effect of stretching on the changes in scattering is larger in the case of face-on incidence of He-Ne laser light than in rim-on incidence. The scattering patterns from RBCs in different orientations as well as from a spherical RBC were compared with numerical results found in literature. Good correlation was found

    Rigid platform for applying large tunable strains to mechanically delicate samples

    Get PDF
    The authors acknowledge the financial support from the Max Planck Society. J.P. acknowledges the financial support from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 2016K1A4A4A01922028). Work in Japan was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Quantum Liquid Crystals” (Grant No. JP19H05824) from the Japan Society for the Promotion of Science.Response to uniaxial stress has become a major probe of electronic materials. Tunable uniaxial stress may be applied using piezoelectric actuators, and so far two methods have been developed to couple samples to actuators. In one, actuators apply force along the length of a free, beam-like sample, allowing very large strains to be achieved. In the other, samples are affixed directly to piezoelectric actuators, allowing the study of mechanically delicate materials. Here, we describe an approach that merges the two: thin samples are affixed to a substrate, which is then pressurized uniaxially using piezoelectric actuators. Using this approach, we demonstrate the application of large elastic strains to mechanically delicate samples: the van der Waals-bonded material FeSe and a sample of CeAuSb2 that was shaped with a focused ion beam.Publisher PDFPeer reviewe

    Mixed ionic-electronic conduction in K1/2Bi1/2TiO3

    Get PDF
    Recently, it has been reported that the Pb-free piezoelectric perovskite Na1/2Bi1/2TiO3 (NBT) can be compositionally tuned by close control of the A-site starting stoichiometry to exhibit high levels of oxide-ion conduction. The related K1/2Bi1/2TiO3 (KBT) perovskite has also drawn considerable interest as a promising Pb-free piezoelectric material; however, its conduction properties have been less extensively investigated. Here we report on the influence of the K/Bi ratio in the starting composition on the electrical properties using a combination of impedance spectroscopy and ion-transport property measurements. KBT ceramics exhibit mixed ionic-electronic (oxide-ion) conduction with tion similar 0.5 at 600-800 degreeC and although variations in the A-site starting stoichiometry can create a similar1 order of magnitude difference in the bulk conductivity at >500 degree C, the conductivity is low (ca. 0.1 to 1 mS cm-1 at 700 degree C) and the activation energy for bulk conduction remains in the range similar1.2 to 1.5 eV. The high temperature electrical transport properties of KBT are therefore much less sensitive to the starting A-site stoichiometry as compared to NBT. However, KBT ceramics exhibit non-negligible proton conduction at lower temperatures (<300 degree C). For K/Bi greater-than-or-equal 1 the total conductivity of KBT ceramics at room temperature can be as high as similar0.1 mS cm-1 under wet atmospheric conditions. This study demonstrates ionic conduction to be a common feature in A1/2Bi1/2TiO3 perovskites, where A = Na, K

    Spin-helical transport in normal and superconducting topological insulators

    Full text link
    In a topological insulator (TI) the character of electron transport varies from insulating in the interior of the material to metallic near its surface. Unlike, however, ordinary metals, conducting surface states in TIs are topologically protected and characterized by spin helicity whereby the direction of the electron spin is locked to the momentum direction. In this paper we review selected topics regarding recent theoretical and experimental work on electron transport and related phenomena in two-dimensional (2D) and three-dimensional (3D) TIs. The review provides a focused introductory discussion of the quantum spin Hall effect in HgTe quantum wells as well as transport properties of 3DTIs such as surface weak antilocalization, the half-integer quantum Hall effect, s + p-wave induced superconductivity, superconducting Klein tunneling, topological Andreev bound states and related Majorana midgap states. These properties of TIs are of practical interest, guiding the search for the routes towards topological spin electronics.Comment: Invited Topical Review on electron transport in 2D and 3D topological insulators, with focus on the quantum spin-Hall effect, weak antilocalization, half-integer quantum Hall effect, s- and p-wave induced superconductivity and superconducting Klein tunneling; 18 pages, 14 figures; accepted for publication in Physica Status Solidi

    Emergent Phenomena Induced by Spin-Orbit Coupling at Surfaces and Interfaces

    Full text link
    Spin-orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature

    Label-free immunoassay for porcine circovirus type 2 based on excessively tilted fiber grating modified with staphylococcal protein A

    Get PDF
    Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity
    corecore