5,003 research outputs found

    Superradiance and multiple scattering of photons in atomic gases

    Full text link
    We study the influence of cooperative effects such as superradiance and subradiance, on the scattering properties of dilute atomic gases. We show that cooperative effects lead to an effective potential between pairs of atoms that decays like 1/r1/r. In the case of superradiance, this potential is attractive for close enough atoms and can be interpreted as a coherent mesoscopic effect. We consider a model of multiple scattering of a photon among superradiant pairs and calculate the elastic mean free path and the group velocity. We study first the case of a scalar wave which allows to obtain and to understand basic features of cooperative effects and multiple scattering. We then turn to the general problem of a vector wave. In both cases, we obtain qualitatively similar results and derive, for the case of a scalar wave, analytic expressions of the elastic mean free path and of the group velocity for an arbitrary (near resonance) detuning.Comment: 12 pages, 7 figure

    Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms

    Full text link
    We study the angular correlation function of speckle patterns that result from multiple scattering of photons by cold atomic clouds. We show that this correlation function becomes larger than the value given by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic interference effect specific to atom-photon interactions, that could not be observed in other systems such as weakly disordered metals. We provide a complete description of this behavior and expressions that allow for a quantitative comparison with experiments.Comment: 4 pages, 2 figure

    Power Load Management as a Computational Market

    Get PDF
    Power load management enables energy utilities to reduce peak loads and thereby save money. Due to the large number of different loads, power load management is a complicated optimization problem. We present a new decentralized approach to this problem by modeling direct load management as a computational market. Our simulation results demonstrate that our approach is very efficient with a superlinear rate of convergence to equilibrium and an excellent scalability, requiring few iterations even when the number of agents is in the order of one thousand. Aframework for analysis of this and similar problems is given which shows how nonlinear optimization and numerical mathematics can be exploited to characterize, compare, and tailor problem-solving strategies in market-oriented programming

    Effect of superradiance on transport of diffusing photons in cold atomic gases

    Full text link
    We show that in atomic gases cooperative effects like superradiance and subradiance lead to a potential between two atoms that decays like 1/r1/r. In the case of superradiance, this potential is attractive for close enough atoms and can be interpreted as a coherent mesoscopic effect. The contribution of superradiant pairs to multiple scattering properties of a dilute gas, such as photon elastic mean free path and group velocity, is significantly different from that of independent atoms. We discuss the conditions under which these effects may be observed and compare our results to recent experiments on photon transport in cold atomic gases.Comment: 4 pages and 1 figur
    • 

    corecore