142 research outputs found

    Hypoglycaemia induces a sustained pro-inflammatory response in people with type 1 diabetes and healthy controls

    Get PDF
    Aim: To determine the duration and the extension of the pro-inflammatory response to hypoglycaemia both in people with type 1 diabetes and healthy controls. Materials and Methods: Adults with type 1 diabetes (n = 47) and matched controls (n = 16) underwent a hyperinsulinaemic-euglycaemic hypoglycaemic (2.8 ± 0.1 mmoL/L [49.9 ± 2.3 mg/dL]) glucose clamp. During euglycaemia, hypoglycaemia, and 1, 3 and 7 days later, blood was drawn to determine immune cell phenotype, monocyte function and circulating inflammatory markers. Results: Hypoglycaemia increased lymphocyte and monocyte counts, which remained elevated for 1 week. The proportion of CD16+ monocytes increased and the proportion of CD14+ monocytes decreased. During hypoglycaemia, monocytes released more tumour necrosis factor-a and interleukin-1ß, and less interleukin-10, after ex vivo stimulation. Hypoglycaemia increased the levels of 19 circulating inflammatory proteins, including high sensitive C-reactive protein, most of which remained elevated for 1 week. The epinephrine peak in response to hypoglycaemia was positively correlated with immune cell number and phenotype, but not with the proteomic response. Conclusions: Overall, despite differences in prior exposure to hypoglycaemia, the pattern of the inflammatory responses to hypoglycaemia did not differ between people with type 1 diabetes and healthy controls. In conclusion, hypoglycaemia induces a range of pro-inflammatory responses that are sustained for at least 1 week in people with type 1 diabetes and healthy controls

    The impact of prior exposure to hypoglycaemia on the inflammatory response to a subsequent hypoglycaemic episode

    Get PDF
    BACKGROUND: Hypoglycaemia has been shown to induce a systemic pro-inflammatory response, which may be driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro-inflammatory response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses to subsequent hypoglycaemia in humans.METHODS: Healthy participants (n = 32) were recruited and randomised to two 2-h episodes of either hypoglycaemia or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to determine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins including hs-CRP.RESULTS: In the group undergoing antecedent hypoglycaemia, the adrenaline response to next-day hypoglycaemia was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated for the whole week. Also, the proportion of pro-inflammatory CD16+-monocytes increased during hypoglycaemia. After ex vivo stimulation, monocytes released more TNF-α and IL-1β, and less IL-10 in response to hypoglycaemia, whereas levels of 19 circulating inflammatory proteins, including hs-CRP, increased for up to 1 week after the hypoglycaemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro-inflammatory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia.CONCLUSION: Hypoglycaemia induces an acute and persistent pro-inflammatory response at multiple levels that occurs largely, but not completely, independent of prior exposure to hypoglycaemia. Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).</p

    The impact of prior exposure to hypoglycaemia on the inflammatory response to a subsequent hypoglycaemic episode

    Get PDF
    BACKGROUND: Hypoglycaemia has been shown to induce a systemic pro-inflammatory response, which may be driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro-inflammatory response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses to subsequent hypoglycaemia in humans.METHODS: Healthy participants (n = 32) were recruited and randomised to two 2-h episodes of either hypoglycaemia or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to determine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins including hs-CRP.RESULTS: In the group undergoing antecedent hypoglycaemia, the adrenaline response to next-day hypoglycaemia was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated for the whole week. Also, the proportion of pro-inflammatory CD16+-monocytes increased during hypoglycaemia. After ex vivo stimulation, monocytes released more TNF-α and IL-1β, and less IL-10 in response to hypoglycaemia, whereas levels of 19 circulating inflammatory proteins, including hs-CRP, increased for up to 1 week after the hypoglycaemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro-inflammatory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia.CONCLUSION: Hypoglycaemia induces an acute and persistent pro-inflammatory response at multiple levels that occurs largely, but not completely, independent of prior exposure to hypoglycaemia. Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).</p

    Blood immune cell profiling in adults with longstanding type 1 diabetes is associated with macrovascular complications

    Get PDF
    Aims/hypothesisThere is increasing evidence for heterogeneity in type 1 diabetes mellitus (T1D): not only the age of onset and disease progression rate differ, but also the risk of complications varies markedly. Consequently, the presence of different disease endotypes has been suggested. Impaired T and B cell responses have been established in newly diagnosed diabetes patients. We hypothesized that deciphering the immune cell profile in peripheral blood of adults with longstanding T1D may help to understand disease heterogeneity.MethodsAdult patients with longstanding T1D and healthy controls (HC) were recruited, and their blood immune cell profile was determined using multicolour flow cytometry followed by a machine-learning based elastic-net (EN) classification model. Hierarchical clustering was performed to identify patient-specific immune cell profiles. Results were compared to those obtained in matched healthy control subjects.ResultsHierarchical clustering analysis of flow cytometry data revealed three immune cell composition-based distinct subgroups of individuals: HCs, T1D-group-A and T1D-group-B. In general, T1D patients, as compared to healthy controls, showed a more active immune profile as demonstrated by a higher percentage and absolute number of neutrophils, monocytes, total B cells and activated CD4+CD25+ T cells, while the abundance of regulatory T cells (Treg) was reduced. Patients belonging to T1D-group-A, as compared to T1D-group-B, revealed a more proinflammatory phenotype characterized by a lower percentage of FOXP3+ Treg, higher proportions of CCR4 expressing CD4 and CD8 T cell subsets, monocyte subsets, a lower Treg/conventional Tcell (Tconv) ratio, an increased proinflammatory cytokine (TNFα, IFNγ) and a decreased anti-inflammatory (IL-10) producing potential. Clinically, patients in T1D-group-A had more frequent diabetes-related macrovascular complications.ConclusionsMachine-learning based classification of multiparameter flow cytometry data revealed two distinct immunological profiles in adults with longstanding type 1 diabetes; T1D-group-A and T1D-group-B. T1D-group-A is characterized by a stronger pro-inflammatory profile and is associated with a higher rate of diabetes-related (macro)vascular complications

    Acid ceramidase regulates innate immune memory

    Get PDF
    Innate immune memory, also called “trained immunity,” is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.</p

    Acid ceramidase regulates innate immune memory

    Get PDF
    Innate immune memory, also called “trained immunity,” is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.</p

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Bayes factors for mixed models: A discussion

    Get PDF
    van Doorn et al. (2021) outlined various questions that arise when conducting Bayesian model comparison for mixed effects models. Seven response articles offered their own perspective on the preferred setup for mixed model comparison, on the most appropriate specification of prior distributions, and on the desirability of default recommendations. This article presents a round-table discussion that aims to clarify outstanding issues, explore common ground, and outline practical considerations for any researcher wishing to conduct a Bayesian mixed effects model comparison

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore