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The impact of prior exposure 
to hypoglycaemia on the inflammatory 
response to a subsequent hypoglycaemic 
episode
Clementine E. M. Verhulst1†, Julia I. P. van Heck1*†, Therese W. Fabricius2†, Rinke Stienstra1,3, Steven Teerenstra4, 
Rory J. McCrimmon5, Cees J. Tack1, Ulrik Pedersen‑Bjergaard2,6† and Bastiaan E. de Galan1,7,8† on behalf of the 
Hypo‑RESOLVE consortium 

Abstract 

Background Hypoglycaemia has been shown to induce a systemic pro‑inflammatory response, which may be 
driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone 
responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro‑inflammatory 
response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses 
to subsequent hypoglycaemia in humans.

Methods Healthy participants (n = 32) were recruited and randomised to two 2‑h episodes of either hypoglycaemia 
or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp 
on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to deter‑
mine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins 
including hs‑CRP.

Results In the group undergoing antecedent hypoglycaemia, the adrenaline response to next‑day hypoglycaemia 
was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia 
increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated 
for the whole week. Also, the proportion of pro‑inflammatory  CD16+‑monocytes increased during hypoglycaemia. 
After ex vivo stimulation, monocytes released more TNF‑α and IL‑1β, and less IL‑10 in response to hypoglycaemia, 
whereas levels of 19 circulating inflammatory proteins, including hs‑CRP, increased for up to 1 week after the hypogly‑
caemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro‑inflam‑
matory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find 
a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia.
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Introduction
Hypoglycaemia is the most common complication of 
insulin treatment, reportedly affecting people with type 1 
diabetes on a twice weekly basis [1]. We and others have 
shown that hypoglycaemia induces a pro-inflammatory 
response, consisting of increased numbers of circulating 
immune cells, including pro-inflammatory monocytes, 
increased ex vivo monocyte responsiveness and circulat-
ing pro-inflammatory cytokines in people with or with-
out diabetes, an effect that is sustained for a week [2–5].

While hypoglycaemia stimulates the release of several 
counterregulatory hormones, including adrenaline, to 
restore normoglycaemia, recurrent hypoglycaemic events 
attenuate this response [6]. Whether recurrent hypogly-
caemia also attenuates the pro-inflammatory response 
is unclear. Adrenaline may be involved in the inflamma-
tory responses to hypoglycaemia and one study reported 
reduced inflammatory responses in people with diabetes 
and attenuated adrenaline responses to hypoglycaemia 
[4]. Adrenaline administration in healthy individuals has 
been shown to result in mobilization of leukocytes with 
cytotoxic effector potential from the marginal pool (vas-
cular epithelium) [7].

Here, we investigated the effect of antecedent hypo-
glycaemia on pro-inflammatory responses to a subse-
quent hypoglycaemic event in healthy individuals, using 
a comprehensive approach that consisted of immune cell 
composition, phenotype and function, and circulating 
inflammatory proteins including hs-CRP.

Research design and methods
Study design
This was a two-centre study, performed at the Radboud 
University Medical Center in Nijmegen, The Netherlands 
and the Nordsjællands University Hospital in Hillerød, 
Denmark. The study was approved by local institutional 
review boards and performed according to the principles 
of the Declaration of Helsinki. All participants gave writ-
ten informed consent.

Participants
This study is part of a larger project (NCT03976271), 
details of which have been published previously [8, 
9] and performed under the Europeaon IMI project 
HypoResolve (website). For this study, we recruited 

healthy participants between August 2019 and March 
2021. All participants were eligible when they were 
between 18 and 80  years old, had a BMI of 19–40  kg/
m2,  HbA1c < 42  mmol/mol (6%) and a blood pres-
sure < 140/90  mmHg. Exclusion criteria were the use of 
any medication (except for oral contraceptives), preg-
nancy, breastfeeding or unwillingness to undertake meas-
ures for birth control, and an infection or vaccination in 
the previous three months.

Study procedure
All eligible study participants were invited for a screening 
visit, including medical history, standard physical exami-
nation and measurement of  HbA1c and serum creatinine. 
After inclusion, participants were randomised to either 
the antecedent hypoglycaemia (HYPO) study-arm or to 
the antecedent normoglycaemia (NORMO) study-arm. 
Participants assigned to HYPO and NORMO study-arms 
were exposed to two 2-h episodes of hypoglycaemia or 
normoglycaemia, respectively, on day 1, using the hyper-
insulinaemic glucose clamp technique (Fig.  1). The next 
morning, all participants underwent a hyperinsulinae-
mic-hypoglycaemic glucose clamp, details of which are 
described below.

Day 1 study protocol
Participants arrived at the research facility in fasting con-
dition between 0700 and 0800 h, having abstained from 
alcohol, caffeine-containing substances and smoking for 
at least 24 h and from strenuous exercise for 48 h. Upon 
arrival, an intravenous catheter was inserted into an ante-
cubital vein of one arm for continuous administration of 
insulin aspart (Novo Nordisk, Bagsværd, Denmark) at a 
rate of 1.5 mU  kg−1  min−1 and a variable infusion of glu-
cose 20% (Baxter B.V., Deerfield, IL). In the dorsal vein 
of the contralateral hand, a second catheter was inserted 
in retrograde fashion for frequent blood sampling, with 
the hand placed in a heated box (temperature ~ 55  °C) 
to arterialise venous blood. Plasma glucose levels were 
measured (Biosen C-Line; EKF Diagnostics, Cardiff, 
U.K.) at baseline and at 5–10 min intervals. After obtain-
ing baseline samples, plasma glucose was allowed to fall 
to 2.8  mmol/L or maintained at normoglycaemia (5.0–
5.5 mmol/L) for two 2-h periods, interspersed with a 2-h 
period of normoglycaemia (total duration, 6 h) in partici-
pants randomised to HYPO and NORMO study-arms, 

Conclusion Hypoglycaemia induces an acute and persistent pro‑inflammatory response at multiple levels 
that occurs largely, but not completely, independent of prior exposure to hypoglycaemia.

Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).

Keywords Antecedent hypoglycaemia, Clamp, Diabetes, Inflammatory responses, Humans
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respectively. All participants received a snack during the 
normoglycaemic break. At the end of the clamp, the insu-
lin infusion was stopped, participants received a meal 
and glucose infusion was increased and then tapered 
until stable normoglycaemic levels were reached.

Day 2 study protocol
On day 2, all participants were requested to return to the 
research facility between 0700 and 0800 h, in fasting con-
dition similar to that for day 1, to undergo a hyperinsu-
linaemic normoglycaemic-hypoglycaemic glucose clamp, 
as described previously [8]. Briefly, using the abovemen-
tioned procedures for conducting the clamp, plasma glu-
cose levels were kept at normoglycaemia (5.0  mmol/L) 
for 30  min, after which these were allowed to drop to 
2.8  mmol/L over 20–30  min and maintained at this 
level for another 60 min. Then, the insulin infusion was 
stopped, glucose infusion was increased and then tapered 
until stable normoglycaemic levels were reached.

Measurements
A modified Edinburgh Hypoglycaemia Score [10] was 
used to assess the nature and intensity of hypoglycaemic 
symptoms at baseline (before onset of insulin infusion), 
during normoglycaemia, and twice during hypoglycae-
mia on both study days. Autonomic symptoms (sweating, 
anxious, tingling of hands and feet, palpitations, hun-
ger, trembling and shivers), neuroglycopenic symptoms 
(feeling warm, confused, inability to concentrate, blurry 
vision, tiredness, difficulty of speaking, weakness, dou-
ble vision, dizziness, drowsiness) and general symptoms 
(headache and nausea) were assessed and ranked from 1 
(none) to 7 (severe).

Blood was drawn for measurements of insulin and 
counterregulatory hormones (glucagon, adrenaline, 
noradrenaline, cortisol and growth hormone (GH) at 
baseline, start and at 60 min duration of the first hypo-
glycaemic phase on day 1, and at baseline, end of normo-
glycaemia and start and end (60 min) of hypoglycaemia 
on day 2. In addition, blood was also drawn on day 2 for 
inflammatory analysis at the end of normoglycaemia and 
hypoglycaemia and 24 h day, 72 h and 1 week thereafter.

Laboratory analysis
Serum creatinine was determined with an enzy-
matic assay on a Cobas 8000 c702 (Roche Diagnostics, 
Woerden, The Netherlands).  HbA1c was assessed by the 
TOSOH G8 and G11 HPLC-analyser (Sysmex, Etten-
Leur, The Netherlands). Plasma adrenaline and noradren-
aline were measured by HPLC in combination with 
fluorometric detection. Plasma insulin was analysed with 
an in-house radioimmunoassay. The plasma glucagon 
concentration was measured using radioimmunoassay 
[11]. Plasma cortisol and GH were determined by a rou-
tine analysis method with an electrochemiluminescent 
immunoassay on a Modular Analytics E170 (Roche Diag-
nostics, GmbH, Mannheim, Germany).

Immune cell number and composition
Immune cell subset numbers were measured on a Sys-
mex XN-450 and Sysmex XN-9000 (Sysmex). FACS 
analysis was performed in one of the two participating 
study sites, because this method is sensitive to confound-
ers when performed at different sites. A total of 50 μl of 
whole undiluted blood was incubated for a duration of 
15 min in the dark at room temperature with the follow-
ing antibodies: CD16-FITC (dilution 1:20), CD14-PC7 

Fig. 1 Flowchart study procedure
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(1:20), CCR2-BV421 (1:20) (BD Biosciences, Vianen, the 
Netherlands); CD41-PC5.5 (1:20), CD11b-BV785 (1:20) 
(ITK Diagnostics BV, Uithoorn, the Netherlands); HLA-
DR-PE (1:10), CD56-APC (1:10), CD3-APC-750 (1:10), 
CD45-KO (1:10), CD36-APC-700(1:10) (Beckman Coul-
ter, Woerden, the Netherlands). Subsequently, 1  ml of 
lysis buffer (BD Pharm Lyse, BD Biosciences) was added, 
samples were mixed, incubated for another 10  min and 
then measured on a flow cytometer (Beckman Coulter 
FC500). To determine the position of analysis gates, sin-
gle staining and fluorescence-minus-one control stains 
were used (Additional file 1: Fig. S1). To analyse the FACS 
data, Kaluza software (Beckman Coulter, Woerden, the 
Netherlands) was used.

Isolation of PBMCs and Monocytes and ex vivo function
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from whole blood using density centrifugation 
over Ficoll-Paque (GE Healthcare, UK). Monocytes were 
subsequently isolated from PBMCs using magnetic acti-
vated cell sorting (MACS) MicroBeads (Miltenyi Biotec) 
for CD14 negative selection according to the manufac-
turer’s instructions. The purity of monocyte isolation was 
checked using Sysmex XN-450 and XN-9000.

CD14 negative selected human monocytes 
(100.000  cells/well) were added to flat bottom 96-wells 
plates and stimulated with RPMI, 20 µg/mL of Pam3Cys 
(P3C, a TLR-2 agonist) or 20  ng/mL of lipopolysaccha-
ride (LPS, a TLR-4 agonist) for 24 h. Supernatants were 
collected and stored at − 20  °C until cytokine meas-
urements using ELISA that included tumour necrosis 
factor-α (TNF-α) (R&D, Minneapolis, Minnesota, USA), 
interleukin-10 (IL-10) (R&D), interleukin 1β (IL-1β) 
(R&D) and Interleukin-6 (IL-6) (R&D).

Inflammatory markers
Plasma high sensitive C-reactive Protein (hs-CRP) con-
centrations were assessed by ELISA following manufac-
turer’s instructions (R&D). Plasma samples were kept 
at -80◦C until measurement and were measured in one 
batch using timepoints normoglycaemia, hypoglycaemia, 
24 h and 1 week. A total of 92 circulating plasma inflam-
matory proteins were measured using the commercially 
available Olink Proteomics AB Inflammation Panel (Upp-
sala, Sweden). Proteins are recognised by antibody pairs 
coupled to cDNA strands which bind in close proximity 
and extend by a polymerase reaction [12]. A threshold 
of 75% was used, and proteins were excluded for analysis 
when the threshold was not met. All samples passed the 
quality control performed by Olink Proteomics. Overall, 
72 of the 92 (78%) proteins were detected in at least 75% 
of the plasma samples and included in the analysis.

Statistical analysis
All normally distributed data are shown as percentages 
or mean ± SD, unless otherwise indicated. All non-nor-
mally distributed data were log transformed before analy-
ses, e.g. the ex vivo cytokine data. The following analyses 
were performed for all parameters except the Olink data. 
Independent t-tests were used to compare continuous 
data between the two participant groups. Repeated meas-
urements data were analysed with mixed models analysis, 
where the dependent variable was the result of the meas-
ured parameter (e.g. immune cell number) of each time-
point and the independent parameter was “time”. Next 
to “time”, “participant group” was added as independent 
variable in this analysis to compare serial data between 
the study-arms. For the Olink data, the following analy-
ses were performed. Visualisation was done using the 
R programming language and R packages “ggbiplot” 
and “ggplot2”. To detect proteins that were significantly 
affected by hypoglycaemia as compared to normoglycae-
mia, separately in the HYPO and in the NORMO group, 
a Wilcoxon matched pairs test between the normoglycae-
mia and each post-hypoglycaemia measurement (24  h, 
72 h and 1 week) was performed. Subjects with missing 
values were excluded from Olink analyses. Spearman 
or Pearson correlation tests were used to determine the 
correlation between mean increase in adrenaline during 
hypoglycaemia and the delta of immune cell numbers, 
phenotype and function for both study groups together 
during hypoglycaemia compared to normoglycaemia. 
Statistical analyses were performed using IBM SPSS Sta-
tistics 27 or R Studio (Version 1.4.1717). Alpha was set at 
0.05 throughout, unless otherwise stated.

Results
A total of 32 participants were enrolled and randomised 
to HYPO or NORMO study-arms. The groups were 
well matched for age (43.6 ± 17.9 vs. 44.3 ± 18.6  years), 
sex (7 males and 9 females in both groups) and body-
mass index (BMI) (23.6 ± 2.1 vs. 22.6 ± 2.8  kg/m2) 
(Table  1). On experimental day 1, glucose levels aver-
aged 2.83 ± 0.13 mmol/L and 2.75 ± 0.09 mmol/L for the 
two hypoglycaemic episodes in the HYPO group, and 

Table 1 Participants characteristics

Data are presented as number (%), mean ± SD

Control Recurrent

Participants, n 16 16

Male/female, n 7/9 7/9

Age, y 44.3 ± 18.6 43.6 ± 17.9

HbA1c, mmol/mol 33.6 ± 3.5 35.4 ± 3.3

% 5.2 ± 0.3 5.4 ± 0.3

BMI, kg/m2 22.6 ± 2.8 23.6 ± 2.1
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5.03 ± 0.22  mmol/L and 5.08 ± 0.18  mmol/L for the cor-
responding normoglycaemic episodes in the NORMO 
group, respectively (Fig.  2A). On day 2, glucose levels 
averaged 5.17 ± 0.33  mmol/L and 5.20 ± 0.38  mmol/L 
(p = 0.815) during the normoglycaemic phase and 
2.76 ± 0.11  mmol/L and 2.84 ± 0.19  mmol/L (p = 0.171) 
during the hypoglycaemic phase in HYPO and NORMO 
groups, respectively (Fig. 2B).

In response to day 2 hypoglycaemia, all counterregu-
latory hormones increased significantly in the NORMO 
group.In the HYPO group, glucagon did not signifi-
cantly increase and the responses of adrenaline and GH 
to hypoglycaemia were significantly blunted compared 
to the NORMO group. Symptom scores increased in 
response to day 2 hypoglycaemia, with no differences 
between HYPO and NORMO groups (Table 2).

Hypoglycaemia increased the number of granulo-
cytes, lymphocytes and monocytes in both HYPO and 
NORMO groups (all p < 0.001), with no significant 

differences between the groups. Although not statisti-
cally significant, there was a trend towards a reduced 
increase in granulocyte number in the HYPO as 
compared to the NORMO group (1.55 ± 0.94 versus 
2.67 ± 2.11·103/µl, p = 0.072), which was due to one par-
ticipant from the NORMO group with a much higher 
increase compared to all other participants..Granulo-
cyte counts normalised 24 h after hypoglycaemia in the 
HYPO group, while it took 3  days to normalise in the 
NORMO group. The levels of lymphocytes and mono-
cytes were also lower 24  h after the hypoglycaemic 
event but remained elevated compared to levels during 
normoglycemia for a week with no differences between 
HYPO and NORMO groups (both p < 0.001, Fig. 3).

Phenotypically, hypoglycaemia induced a shift 
from classical  CD14+ monocytes towards more pro-
inflammatory non-classical  CD16+ monocytes in both 
groups (p < 0.001). This shift normalised 24  h after 
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on experimental day 1 (A) and, experimental day 2 (B)



Page 6 of 13Verhulst et al. Cardiovascular Diabetology           (2024) 23:55 

hypoglycaemia and was not significantly different 
between the two groups (Fig. 4).

Under normoglycaemic conditions on day 2, cytokine 
production appeared to be higher in the HYPO than in 
the NORMO group after ex vivo LPS stimulation, but not 
after P3C stimulation, which reached statistical signifi-
cance for IL-1β and IL-6 (p < 0.05, Fig. 5). Hypoglycaemia 
caused a significant increase in LPS- or P3C-stimulated 
TNF-α and IL-1β production and a decrease in stimu-
lated IL-10 production, which normalised after 24 h and 
none of which was modified by antecedent hypoglycae-
mia. Hypoglycaemia did not affect LPS- or P3C-stimu-
lated IL-6 production in either group.

The pro-inflammatory protein hs-CRP was slightly 
higher in the HYPO compared to the NORMO group 
during day 2 normoglycaemia and remained unaltered 
in response to hypoglycaemia on day 2. In contrast, hs-
CRP levels increased 24  h after hypoglycaemia in the 
NORMO group (p = 0.002) and remained elevated for a 
week (p = 0.044, Fig. 6A).

Both groups showed similar increases in other inflam-
matory proteins in response to hypoglycaemia (Fig.  6). 
After 24 h, inflammatory proteins that were upregulated 
included TRANCE, FIT3L, IFN-γ and IL-10RB, whereas 
after 1  week, these included TNF, IL-10, TNFRSF9 and 
TRANCE (Fig.  6B, C). There were no differences in 
responses of these inflammatory proteins between the 
HYPO and NORMO subgroups after 24 h, where 18 pro-
teins were significantly higher in both groups. However, 
after 1 week, the number of proteins that were increased 
was lower in the HYPO (12 increased proteins) than in 
the NORMO group (39 increased proteins) (Fig. 6D, E).

The adrenaline response to hypoglycaemia was posi-
tively correlated with the increase of lymphocytes dur-
ing hypoglycaemia in both groups combined (p < 0.001) 
(Fig. 7A). A similar positive correlation was seen between 
the adrenaline response and the increase in granulo-
cytes and monocytes, but these did not reach statistical 
significance (Fig.  7B, C). The adrenaline response did 
not correlate with the change in monocyte phenotype, 
(Fig. 7D, E), the differences in cytokine production or the 
level of circulating inflammatory proteins during or after 
hypoglycaemia (Fig.  7F–J). Regarding the role of other 
counterregulatory hormones, none of the inflammatory 
responses to hypoglycaemia correlated with the cortisol 
or GH (data not shown) responses to hypoglycaemia in 
neither group (p < 0.05) (Fig. 8).

Discussion
In this study, hypoglycaemia caused an acute and per-
sistent pro-inflammatory effect, defined by changes in 
number, phenotype and function of monocytes com-
bined with increased levels of various pro-inflammatory 
mediators. Although adrenaline responses were dimin-
ished after antecedent hypoglycaemia, there was no 
robust modifying effect of antecedent hypoglycaemia on 
these pro-inflammatory responses. Only the persistent 
response of circulating inflammatory markers seemed 
slightly decreased.

Our data are in line with earlier observations showing 
that hypoglycaemia acutely causes a range of pro-inflam-
matory responses [13–16], including increases in the 
number of immune cells [4, 5, 17], a phenotypical shift 
towards more pro-inflammatory non-classical monocytes 
and increases in cytokine production and release of pro-
inflammatory proteins. We previously showed that many 
of these effects occur in both people with or without type 
1 or type 2 diabetes, irrespective of level of glucose con-
trol or reported hypoglycaemic awareness [4, 5, 17]. The 
present study now extends these findings by showing that 
these pro-inflammatory effects are largely unaffected by 
recent, i.e. previous day, antecedent hypoglycaemia.

Table 2 Hormone levels during day 1 and day 2 clamps

* p < 0.05 versus baseline
# p < 0.05 versus antecedent normoglycaemia Day 2
† p < 0.05 versus Day 1

Antecedent 
normoglycaemia

Antecedent 
hypoglycaemia

Day 1 Day 2 Day 1 Day 2

Adrenaline (nmol/L)

Baseline 0.20 ± 0.12 0.23 ± 0.13 0.17 ± 0.10 0.14 ± 0.09#

Start hypo 0.18 ± 0.13 0.92 ± 1.08† 0.76 ± 0.62 0.23 ± 0.12# †

End 
of hypo

0.18 ± 0.14 2.68 ± 1.41*† 1.84 ± 1.16* 1.45 ± 1.24* #

Noradrenaline (nmol/L)

Baseline 1.44 ± 0.72 1.79 ± 0.58 1.67 ± 0.62 1.61 ± 0.68

Start hypo 1.35 ± 0.63 2.06 ± 0.68 † 1.92 ± 0.62 1.67 ± 0.73

End 
of hypo

1.46 ± 0.75 2.51 ± 0.87*† 1.99 ± 0.82* 2.36 ± 1.43*

Glucagon (ng/L)

Baseline 31.61 ± 10.49 30.86 ± 7.89 37.16 ± 25.13 35.99 ± 26.87

Start hypo 31.44 ± 12.69 33.77 ± 10.13

End 
of hypo

25.07 ± 5.99* 46.29 ± 19.69*† 62.82 ± 54.15* 48.28 ± 23.49

Cortisol (umol/L)

Baseline 0.42 ± 0.10 0.38 ± 0.10 0.43 ± 0.13 0.37 ± 0.12†

Start hypo 0.25 ± 0.06 0.23 ± 0.11

End 
of hypo

0.28 ± 0.08 0.53 ± 0.11*† 0.51 ± 0.14* 0.48 ± 0.15*

Growth hormone (mE/L)

Baseline 12.01 ± 13.47 8.37 ± 8.49 9.50 ± 11.08 5.45 ± 7.26†

Start hypo 4.96 ± 9.81 3.63 ± 5.27

End 
of hypo

7.06 ± 7.89 49.23 ± 28.19*† 35.75 ± 18.65* 28.34 ± 14.09*#
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In line with a switch in monocyte phenotype, we also 
found a switch in monocyte function in that ex  vivo 
pro-inflammatory cytokine production increased dur-
ing hypoglycaemia, whereas ex  vivo anti-inflammatory 
production decreased [17]. Somewhat surprisingly, 
we observed a trend towards increased rather than 
decreased levels of cytokine production after antecedent 
hypoglycaemia following ex  vivo stimulation with LPS, 

again arguing against an attenuating effect of anteced-
ent hypoglycaemia on the immune system. This suggests 
that hypoglycaemia causes changes occur in pathogen-
specific signalling pathways which potentially affect the 
expression of pattern recognition receptors on the cell 
surface or their downstream effectors.

Interestingly, we found an attenuating effect of anteced-
ent hypoglycaemia on the hs-CRP response to next-day 

Fig. 3 Counts (·103/µL) of granulocytes (A), lymphocytes (B), and monocytes (C) after antecedent hypoglycaemia (HYPO) (red symbols) 
and antecedent normoglycaemia (NORMO) (black symbols). Data are presented as mean ± SEM, *p < 0.05, **p < 0.01 and ***p < 0.01 change 
versus normoglycaemia

Fig. 4 Proportion (%) of classical, intermediate and non‑classical monocytes after antecedent normoglycaemia (top) and antecedent 
hypoglycaemia (bottom). ***p < 0.001 change versus normoglycaemia
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Fig. 5 Ex vivo cytokine production of TNF‑α (A), IL‑1β (B), IL‑6 (C) and IL‑10 (D) upon LPS or P3C stimulation after antecedent hypoglycaemia (HYPO) 
(red symbols) and antecedent normoglycaemia (NORMO) (black symbols). Data presented as mean ± SEM, *p < 0.05, **p < 0.01 and ***p < 0.01 
change versus normoglycaemia. Differences between groups are marked in blue *p < 0.05
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hypoglycaemia. However, this attenuated response 
was not directly related to the suppressed adrenaline 
response in participants exposed to prior hypoglycaemia. 

Therefore, it could be that adrenaline is not the origin 
of the pro-inflammatory response but a marker of the 
response.

Fig. 6 hs‑CRP levels in plasma (A) over time after antecedent hypoglycaemia (HYPO) (red symbols) and antecedent normoglycaemia 
(NORMO) (black symbols). Data presented log2 fold change compared to normoglycaemia. Volcano plots of circulating inflammatory proteins 
in the antecedent hypoglycaemia (HYPO) and antecedent normoglycaemia (NORMO) groups after 1 (B, C) and 7 days (D, E) after hypoglycaemia 
compared to normoglycaemia. Proteins in red are significantly different compared to normoglycaemia (Wilcoxon paired test, p value < 0.05)
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Fig. 7 Scatter plots representing the correlation between the change in adrenaline during hypoglycaemia compared to normoglycaemia 
with the change in granulocytes (A), lymphocytes (B) and monocytes (C), monocyte phenotype (D, E), cytokine production (F–I) and inflammatory 
proteins (J) (Spearman test) during hypoglycaemia compared to normoglycaemia (Pearson test, unless otherwise stated), correlation coefficients (r) 
and confidence interval (CI) are depicted in the figures *p < 0.05, ** p < 0.01, ***p < 0.001)
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When looking at other circulating markers of inflam-
mation, we found a sustained increase lasting up to 
1  week of various circulating inflammatory proteins, 
including IL-12B. This cytokine stimulates T and NK-
cells to produce IFN-γ, which was also found to increase 
in response to hypoglycaemia [18]. IFN-γ in turn acti-
vates macrophages, which then produce TNF-α [19]. In 
addition, CXCL9, CCL23, CCL3 and CLL4 increased in 
response to hypoglycaemia, which can recruit immune 
cells, thus potentially contributing to the persistently ele-
vated levels of circulating white blood cells [20]. Overall, 
these observations indicate that hypoglycaemia activates 
both the innate and adaptive immune system and that the 
activation lasts for 1 week. Interestingly, we found fewer 
proteins to be elevated in the HYPO group, which sug-
gests that antecedent hypoglycaemia may have a mod-
est inhibiting effect on the immune activation following 
hypoglycaemia. This has also been seen in animal mod-
els where in both mice with and without type 1 diabetes, 
recurrent hypoglycaemic amplified inflammatory mark-
ers in hippocampal homogenates [21].

The adrenaline response has been suggested to be 
crucial in starting the inflammatory response following 
hypoglycaemia. Exposure to adrenaline has been asso-
ciated with inflammatory changes in granulocytes and 
monocytes in  vitro and in  vivo [22]. In agreement with 
previous observations [23], we observed a diminished 
adrenaline response in the HYPO group compared to 
the NORMO group. We found a positive correlation 
between the adrenaline response during hypoglycaemia 

and increase in lymphocyte numbers in the total study 
population and a similar trend for numbers of granulo-
cytes and monocytes. The increase in pro-inflammatory 
cytokines following hypoglycaemia was independent of 
the adrenaline response and the exposure to antecedent 
hypoglycaemia. This contrasts with previous research 
that found an immunosuppressive effect of adrenaline on 
ex  vivo cytokine production [22]. Overall, our findings 
suggests that the pro-inflammatory effects of hypogly-
caemia, as investigated here, are not solely driven by the 
adrenaline response. It is also possible that the adrenaline 
response that we observed in the antecedent hypoglycae-
mia group, albeit attenuated, was still sufficient in initiat-
ing the immune response. Other hormones like cortisol 
can be involved in the pro-inflammatory response [3]. 
The lack of correlation between cortisol and the inflam-
matory readouts argues against this option. Another 
explanation for the modest role of adrenaline found in 
this study could be a lack of power, as the main objective 
of this study was not to determine the role of adrenaline 
in inflammation following hypoglycaemia, fow which fur-
ther research is needed.

Apart from a somewhat lower number of proteins acti-
vated by hypoglycaemia after antecedent events, overall 
there was largely no adaptation (at least not after two 
episodes) regarding the inflammatory response to hypo-
glycaemia. This is in contrast with the attenuating effect 
of recurrent hypoglycaemia on hormone responses to 
subsequent hypoglycaemia. Previously, an attenuated 
inflammatory response to hypoglycaemia was found in 

Fig. 8 Scatter plots representing the correlation between the change in cortisol during hypoglycaemia compared to normoglycaemia 
with the change in granulocytes (A), lymphocytes (B) and monocytes (C), and inflammatory proteins (D) (Spearman test) during hypoglycaemia 
compared to normoglycaemia (Pearson test, unless otherwise stated), correlation coefficients (r) and confidence interval (CI) are depicted 
in the figures
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people with impaired awareness of hypoglycaemia [4]. 
One could speculate that this attenuated response might 
protect against harmful effects of subsequent hypogly-
caemia. However, a blunted adrenaline response to hypo-
glycaemia following recurrent episodes of hypoglycaemia 
did not protect against markers of vascular dysfunction 
[2]. Furthermore, persistent prothrombotic effects have 
been reported following recurrent hypoglycaemia [13]. 
These findings, along with ours, suggest that the inflam-
matory response following hypoglycaemia occurred 
largely irrespective of prior exposure to hypoglycaemia, 
level of hypoglycaemic awareness and glycaemic control.

Our study has limitations. The induced hypoglycae-
mia events were highly controlled and maintained for 
a certain duration with the hyperinsulinaemic glucose 
clamp technique in people without diabetes, whereby the 
hypoglycaemic events may differ in depth, duration and 
number from spontaneous hypoglycaemia in daily life 
in people with diabetes treated with insulin. However, 
this method ensured that all participants underwent an 
identical hypoglycaemic event, so that we were able to 
compare the results between the two groups. Also, we 
cannot exclude an attenuating effect of more than two 
hypoglycaemic events on the inflammatory response, 
although this still does not explain the discrepancy with 
adrenaline. Another limitation is that the rather high 
doses of insulin, such as those used for the clamps, can 
reduce pro-inflammatory responses [2]. However, despite 
any potential anti-inflammatory effects of insulin, we 
were still able to observe pro-inflammatory effects of 
hypoglycaemia.

Our study has also strengths. The two investigated 
groups were well matched for age, sex and BMI. In addi-
tion, we provided a comprehensive assessment of the 
inflammatory profile, including leukocyte cell counts, 
phenotype of monocytes, function of monocytes and cir-
culating inflammatory proteins. Finally, unlike most pre-
vious studies on the consequences of hypoglycaemia on 
inflammation, our investigations continued up to a week 
after the hypoglycaemic event.

In conclusion, our study provides evidence that the 
inflammatory response to hypoglycaemia occurs largely, 
but not completely, independent of prior exposure to 
hypoglycaemia. Future research is needed to elaborate 
further on the mechanisms that underly the observed 
inflammatory effect, and the potential role of the inflam-
matory response on the development of cardiovascular 
complications.
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