648 research outputs found

    Reverse That Number! Decoding Order Matters in Arithmetic Learning

    Full text link
    Recent advancements in pretraining have demonstrated that modern Large Language Models (LLMs) possess the capability to effectively learn arithmetic operations. However, despite acknowledging the significance of digit order in arithmetic computation, current methodologies predominantly rely on sequential, step-by-step approaches for teaching LLMs arithmetic, resulting in a conclusion where obtaining better performance involves fine-grained step-by-step. Diverging from this conventional path, our work introduces a novel strategy that not only reevaluates the digit order by prioritizing output from the least significant digit but also incorporates a step-by-step methodology to substantially reduce complexity. We have developed and applied this method in a comprehensive set of experiments. Compared to the previous state-of-the-art (SOTA) method, our findings reveal an overall improvement of in accuracy while requiring only a third of the tokens typically used during training. For the purpose of facilitating replication and further research, we have made our code and dataset publicly available at \url{https://anonymous.4open.science/r/RAIT-9FB7/}

    Elevated serum platelet count inhibits the effects of brain functional changes on cognitive function in patients with mild cognitive impairment: A resting-state functional magnetic resonance imaging study

    Get PDF
    ObjectiveBrain function remodeling has been observed in patients with mild cognitive impairment (MCI) and is closely associated with cognitive performance. However, it is not clear if this relationship is influenced by complete blood counts. This study investigated the role of complete blood counts in the relationship between brain function and cognitive performance.MethodsTwenty-two MCI patients and eighteen controls were enrolled. All subjects underwent resting-state functional magnetic resonance imaging. A neuropsychological battery [Mini-Mental Status Examination, Auditory Verbal Learning Test (AVLT), Symbol Digit Modalities Test, Boston Naming Test (BNT), Shape Trails Test B (STT-B), Rey Complex Figure Test (RCFT), Hamilton Anxiety Rating Scale (HAMA), and Hamilton Depression Scale] was used to assess cognitive function, and MCI patients received complete blood counts tests for red blood cells (RBC), white blood cells, hemoglobin (HGB), monocytes, and platelet counts (PLT).ResultsCompared with controls, MCI patients demonstrated significantly decreased amplitude of low-frequency fluctuation (ALFF) values in the left dorsolateral superior frontal gyrus, left post orbitofrontal cortex, right medial superior frontal gyrus, right insula, and left triangular inferior frontal gyrus. In the MCI group, there were associations between ALFF values of the left hippocampus (HIP.L) and AVLT (p = 0.003) and AVLT-N5 scores (p = 0.001); ALFF values of the right supramarginal gyrus (SMG.R) and BNT scores (p = 0.044); ALFF values of the right superior temporal gyrus (STG.R) and BNT scores (p = 0.022); ALFF values of the left precuneus (PCUN.L) and STT-B time (p = 0.012); and ALFF values of the left caudate nucleus (CAU.L) and RCFT-time (p = 0.036). Moreover, the HAMA scores were negatively correlated with RBC and HGB levels, and positively correlated with monocyte count. The PLT count was positively correlated with STT-B time. Additionally, high PLT count inhibited the effect of ALFF values of the PCUN. L on STT-B performance in MCI patients (p = 0.0207).ConclusionALFF values of the HIP. L, SMG.R, STG. R, PCUN.L, and CAU. L were associated with decreased memory, language, executive function, and visuospatial ability in MCI patients. Notably, elevated PLT count could inhibit the effect of brain functional changes in the PCUN.L on executive function in MCI patients

    Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development

    Get PDF
    Emerging evidence shows that m(6)A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m(6)A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m(6)A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research

    High precision proton beam monitor system concept design on CSNS based on SiC

    Full text link
    A high precision beam monitor system based on silicon carbide PIN sensor is designed for China Spallation Neutron Source 1.6 GeV proton beam to monitor the proton beam fluence.The concept design of the beam monitor system is finished together with front-end electronics with silicon carbide PIN sensors, readout system and mechanical system.Several tests are performed to study the performance of each component of the system.The charge collection of the SiC PIN sensors after proton radiation is studied with 80 MeV proton beam for continuous running. Research on the performance of the front-end electronics and readout system is finished for better data acquisition.The uncertainty of proton beam fluence is below 1% in the beam monitor system

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Electroweak production of two jets in association with a Z boson in proton-proton collisions root s =13 TeV

    Get PDF
    A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at root s = 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lljj final state with l including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses m(ll) > 50 GeV, m(jj) > 120 GeV, and transverse momenta P-Tj > 25 GeV is sigma(EW) (lljj) = 534 +/- 20 (stat) fb (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.6 <cwww/Lambda(2) <2.6 TeV-2 and -8.4 <cw/Lambda(2) <10.1 TeV-2. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore