753 research outputs found

    Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

    Full text link
    Learning the physical simulation on large-scale meshes with flat Graph Neural Networks (GNNs) and stacking Message Passings (MPs) is challenging due to the scaling complexity w.r.t. the number of nodes and over-smoothing. There has been growing interest in the community to introduce \textit{multi-scale} structures to GNNs for physical simulation. However, current state-of-the-art methods are limited by their reliance on the labor-intensive drawing of coarser meshes or building coarser levels based on spatial proximity, which can introduce wrong edges across geometry boundaries. Inspired by the bipartite graph determination, we propose a novel pooling strategy, \textit{bi-stride} to tackle the aforementioned limitations. Bi-stride pools nodes on every other frontier of the breadth-first search (BFS), without the need for the manual drawing of coarser meshes and avoiding the wrong edges by spatial proximity. Additionally, it enables a one-MP scheme per level and non-parametrized pooling and unpooling by interpolations, resembling U-Nets, which significantly reduces computational costs. Experiments show that the proposed framework, \textit{BSMS-GNN}, significantly outperforms existing methods in terms of both accuracy and computational efficiency in representative physical simulations.Comment: Updates summary: * update to the accepted version ICM

    AvatarCraft: Transforming Text into Neural Human Avatars with Parameterized Shape and Pose Control

    Full text link
    Neural implicit fields are powerful for representing 3D scenes and generating high-quality novel views, but it remains challenging to use such implicit representations for creating a 3D human avatar with a specific identity and artistic style that can be easily animated. Our proposed method, AvatarCraft, addresses this challenge by using diffusion models to guide the learning of geometry and texture for a neural avatar based on a single text prompt. We carefully design the optimization framework of neural implicit fields, including a coarse-to-fine multi-bounding box training strategy, shape regularization, and diffusion-based constraints, to produce high-quality geometry and texture. Additionally, we make the human avatar animatable by deforming the neural implicit field with an explicit warping field that maps the target human mesh to a template human mesh, both represented using parametric human models. This simplifies animation and reshaping of the generated avatar by controlling pose and shape parameters. Extensive experiments on various text descriptions show that AvatarCraft is effective and robust in creating human avatars and rendering novel views, poses, and shapes. Our project page is: https://avatar-craft.github.io/.Comment: ICCV 2023 Camera Read

    Testing General Relativity with NuSTAR Data of Galactic Black Holes

    Get PDF
    Einstein's theory of General Relativity predicts that the spacetime metric around astrophysical black holes is described by the Kerr solution. In this work, we employ state-of-the-art in relativistic reflection modeling to analyze a selected set of NuSTAR spectra of Galactic black holes to obtain the most robust and precise constraints on the Kerr black hole hypothesis possible today. Our constraints are much more stringent than those from other electromagnetic techniques, and with some sources we get stronger constraints than those currently available from gravitational waves.Comment: 15 pages, 11 figures. v2: refereed versio

    A variable ionized disk wind in MAXI J1803-298 revealed by NICER

    Full text link
    We present the results from the NICER observation data of MAXI J1803-298 across the entire 2021 outburst. In the intermediate and soft state, we detect significant absorption lines at 7.0\sim 7.0 keV and 6.7\sim 6.7 keV, arising from the X-ray disk wind outflowing with a velocity of hundreds of km per second along our line of sight. The fitting results from photoionized model suggest that the wind is driven by thermal pressure and the mass-loss rate is low. We find a clear transition for iron from predominantly H-like to predominantly He-like during the intermediate-to-soft state transition. Our results indicate this transition for iron is caused by the evolution of the illuminating spectrum and the slow change of the geometric properties of the disk wind together. The coexistence of disk wind and QPOs features in intermediate state is also reported. Our study makes MAXI J1803-298 the first source in which a transition from optical wind to X-ray wind is detected, offering new insights into the evolution of disk winds across an entire outburst and long-term coupling of accretion disks and mass outflows around accreting black holes

    Systematic analysis of the necroptosis index in pan-cancer and classification in discriminating the prognosis and immunotherapy responses of 1716 glioma patients

    Get PDF
    Necroptosis is a programmed form of necrotic cell death that serves as a host gatekeeper for defense against invasion by certain pathogens. Previous studies have uncovered the essential role of necroptosis in tumor progression and implied the potential for novel therapies targeting necroptosis. However, no comprehensive analysis of multi-omics data has been conducted to better understand the relationship between necroptosis and tumor. We developed the necroptosis index (NI) to uncover the effect of necroptosis in most cancers. NI not only correlated with clinical characteristics of multiple tumors, but also could influence drug sensitivity in glioma. Based on necroptosis-related differentially expressed genes, the consensus clustering was used to classify glioma patients into two NI subgroups. Then, we revealed NI subgroup I were more sensitive to immunotherapy, particularly anti-PD1 therapy. This new NI-based classification may have prospective predictive factors for prognosis and guide physicians in prioritizing immunotherapy for potential responders

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore