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Necroptosis is a programmed form of necrotic cell death that serves as a host
gatekeeper for defense against invasion by certain pathogens. Previous studies
have uncovered the essential role of necroptosis in tumor progression and implied
the potential for novel therapies targeting necroptosis. However, no
comprehensive analysis of multi-omics data has been conducted to better
understand the relationship between necroptosis and tumor. We developed
the necroptosis index (NI) to uncover the effect of necroptosis in most
cancers. NI not only correlated with clinical characteristics of multiple tumors,
but also could influence drug sensitivity in glioma. Based on necroptosis-related
differentially expressed genes, the consensus clustering was used to classify
glioma patients into two NI subgroups. Then, we revealed NI subgroup I were
more sensitive to immunotherapy, particularly anti-PD1 therapy. This new NI-
based classification may have prospective predictive factors for prognosis and
guide physicians in prioritizing immunotherapy for potential responders.
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Introduction

Glioma is a common primary intracranial tumor that accounts for
approximately 40%–50% of all brain tumors. It is one of the leading
causes of cancer-related deaths, prone to chemo-resistance, and one of the
main reasons for unsatisfactory treatment outcomes (Huang et al., 2019;
Han et al., 2020).

Necroptosis, also known as programmed necrosis, is a
regulated form of necrotic cell death mediated by RIP1 and
RIP3 kinases. It was initially found to be an alternative to
apoptosis following the involvement of receptors in the dead
region (Degterev et al., 2005). Although necrosis is widely
considered to be a compromise strategy adopted by tumors
to create a favorable environment for proliferation and
metastasis (DARJAKANDUC et al., 2002), its genetically
programmed counterpart, i.e., necroptosis, has been found to
exert an inhibitory role in most tumors (Lawlor et al., 2015;
Newton, 2015). In some tumor cell lines, two-thirds of the
RIPK3 protein levels were decreased, indicating that tumor
cells tend to escape necroptosis for survival. Furthermore,
low expression of RIPK3 suggests a poorer prognosis for
tumor patients (Duan-Wu Zhang et al., 2009; Goodall et al.,
2016). Drug-induced necroptosis suppresses tumor growth and
decreases tumor metastasis using the accumulated reactive
oxygen species (ROS) (Fulda, 2013; Marino et al., 2014; Yang
et al., 2018); this may be one reason for the observed
relationship between the expression of necroptotic-related
genes and patient prognosis.

In the present study, we performed the first comprehensive
analysis of necroptosis regulator genes (NRGs) and the
necroptosis index (NI) in pan-cancer. The results revealed
that necroptosis was related to various cancer hallmarks,
mutation, the immune system, stemness, and prognosis.
Then, we calculated NI in glioma patients using the single
sample gene set enrichment analysis (ssGSEA) algorithm.
Subsequently, we obtained necroptosis subgroups and
explored differences in genomic variants and the tumor
microenvironment between the two necroptosis subgroups
through integration analysis to determine the differential
efficacy of immunotherapy and chemotherapy. These findings
discovered the important role of necroptosis in tumors and
contributed to further study of necroptosis-related molecular
mechanisms. In future, this could assist physicians and glioma
patients to individualize survival prediction and provide better
treatment choices based on NI classification.

Methods

Data extraction

RNA_seq, copy number alteration data, and clinical
characteristic of pan-cancer were gathered from UCSC Xena
Browser (https://xenabrowser.net/datapages/). RNA_seq
(FPKM) and clinical information for 698 and 1,018 glioma
samples were obtained from the TCGA and CGGA databases.
Mutation data of low-grade glioma (LGG) and Glioblastoma
(GBM) were download from TCGA.

Recognizing necroptosis regulators

In a recent study from 2016, Tania Love Aaes et al.
discovered that RIPK1, RIPK3, FADD, and MLKL were the
key factors for necroptosis (Aaes et al., 2016). In 2021, Han-Hee
Park et al. found that RIPK1, RIPK3, TNF, and MLKL are also
proposed to be key molecules in necroptosis (Park et al., 2021).
Kim Newton et al. identified TLR3, FASLG, and FAS as key
factors in necroptosis in 2016 (Newton and Manning, 2016).
Finally, we combined with MSigDB Team (GOBP_
NECROPTOTIC_SIGNALING_PATHWAY) (https://www.
gsea-msigdb.org/gsea/msigdb/) to obtain these eight
Necroptosis-related genes (FADD, TNF, FASLG, MLKL,
TLR3, RIPK1, FAS, and RIPK3) (Linkermann and Green, 2014).

Establishing the necroptosis index

The necroptosis index to represent the necroptosis level was
established based on the expression data for genes of necroptosis
key genes including positive components of FADD, TNF, FASLG,
MLKL, TLR3, RIPK1, FAS, and RIPK3. The enrichment score of these
genes that regulated necroptosis was calculated using ssGSEA in the R
package ‘GSVA’.

Gene set enrichment analysis

To identify the pathways associated with necroptosis, the
samples of each tumor type were divided into two groups
according to the NI, consisting of the top 30% and bottom
30%. Then, the gene set enrichment analysis was performed.

RNA extraction, RT-PCR, and qRT -PCR

Tissue RNA isolation total RNA was extracted from eight
Glioblastoma (GBM) and control brain tissue samples. Human
specimens were approved by the Ethics Committee of the
Second Hospital of Harbin Medical University. TRIzol
reagent (Invitrogen) was used to extract total RNA from the
cells and tissue specimens. Primers for eight genes were
synthesized from Tsingke Biotech (Beijing, China).
PrimeScript RT reagent kit with gDNA Eraser (Takara Bio,
Inc.) was used to prepare cDNA, and SYBR Green II mixture
(Takara Bio, Inc.) was used for RT-qPCR. Calculation of target
mRNA levels was based on the CT method and normalization to
human ACTB expression. The original PCR data and analysis
process of these 16 tissue samples are presented in
Supplementary Table S7.

Identification NI subgroups

Consensual clustering uses the k-means algorithm to identify
specific NI subgroups associated with the expression of NRGs.
Number and stability of clusters were decided by the consensus
clustering algorithm using the “ConsensuClusterPlus” package. We
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FIGURE 1
The relationship between clinical factors and NI. (A–D) The differential expression of NI among Immunophenotype (A), prognostic results (B),
treatment response (C), and race (D) in pan-cancer.
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conducted the experiment with 1,000 iterations to ensure the robustness
of our categorizations (Wilkerson and Hayes, 2010; Zhang et al., 2020).

Mutation data in NI subgroups

We detected the SNVs, SNPs, and INDELs using the software
VarScan2 (Koboldt et al., 2012a). The co-occurrence and mutually
exclusive mutations were identified using theCoMEt algorithm
(Leiserson et al., 2015). Mutation data were analyzed in two groups
and visualized using the “maftools” R package (Koboldt et al., 2012b).

Differential expression genes analysis of NI
subgroups

To test genes differentially expressed between NI subgroups, gene
expression data for glioma RNA_seq were downloaded from TCGA.
Then, the fold change and adjusted p-value were calculated by the limma
package (Ritchie et al., 2015). We defined genes with an adjusted p-value
less than 0.05 and fold change<|2| as the differential expression genes
(DEGs).

Clinical features analysis

TheRpackage “survival”was used to assess the prognosis potential of
theNRGs and necroptosis index among tumors. For survival analysis, the
expression threshold was exhaustively tested and the one with most
significant p-value was considered the best cut-off.

Immune infiltration

The ssGSEA was applied to detect the infiltrating scores of
28 immune cells. Feature gene panels for each immune cell type were
obtained from a recent publication (Charoentong et al., 2017). The
relative abundance of each immune cell type was represented by an
enrichment score in ssGSEA analysis. The ssGSEA score was normalized
to unity distribution, for which zero is the minimal and one is the
maximal score for each immune cell type. The bio-similarity of the
immune cellfiltrationwas estimated bymulti-dimensional scaling (MDS)
and a Gaussian fitting model.

WGCNA

The key genes in 4,645 DEGs were identified by applyingWGCNA.
First, we constructed the adjacency matrix according to the connectivity
of the best β values in order to make gene distributions conform to the
scale-free network and transformed the adjacency matrix to topology
overlap matrix (TOM). Next, we used the heterogeneity among genes to
aggregate the genes for the TOM. Finally, the identified TOMs were
defined as components and dynamical tree cutting algorithm was used
for stratified clustering to identifymodules withminimummodule size of
25 (Langfelder and Horvath, 2008; Yi et al., 2020).

Significance of the NI subgroups in
chemotherapeutic sensitivity

An algorithm developed by Geeleheret et al. (Paul Geeleher and
Huang, 2014) and the “pRRophetic” package (Geeleher et al., 2014) were
used by the TCGA project to compute the IC50 of commonly used
chemotherapeutic agents in order to evaluate the clinical efficacy of NI
subgroups. The AJCC guidelines recommend 30 common antineoplastic
agents for cancer treatment, such as Imatinib, Adriamycin, Cisplatin, and
Vinblastine. The distinction in IC50 of commonly used drugs in two NI
subgroups was assessed by the Wilcoxon test.

Statistical analysis

All statistical analyses were executed with R version 4.0.5 (Yoshihara
et al., 2013). Adjustment for multiple testing was used to compare
differences in immune and mutation status between NI subgroups.
p < 0.05 was regarded as statistically significant.

Results

Aberrant expression of necroptosis index in
cancers

In the present study, the eight genes extracted from MSigDB that
play crucial roles in the regulation of necroptosis were identified as
NRGs, and included FADD, TNF, FASLG, MLKL, TLR3, RIPK1, FAS,
and RIPK3. In order to further understand the importance of
necroptosis in tumor progression and explore the factors or
biological mechanisms relevant to necroptosis, NI was modeled
based on the positive core group component enrichment fraction
minus the negative core group component enrichment fraction
calculated by ssGSEA (Supplementary Table S1). First, we studied
the relationship between NI and molecular features. NI were clearly
distinguished in all tumor types according to immunophenotype from a
previous article (Figure 1A). We found that the NI of C4, C5, and
C6 were significantly higher than those of C1, C2, and C3. We know
C3 had the best prognosis, while C2 and C1 had less favorable
outcomes. In our study, C4 and C6 had poor clinical outcomes.
Thus, the NI in most tumors could respond to the immune status
and prognosis of patients. Of all the tumors, NI in 11 tumors showed
remarkable distinctions in survival status (Figure 1B), these were ACC,
KIRC, LGG,MESO, PAAD, SARC, SKCM, STAD, THCA, THYM, and
UCEC. NI in eight tumors revealed markedly different between-
treatment results (Figure 1C): ACC, COAD, DLBC, ESCA, KIRC,
KIRP, LGG, and UCEC. NI in nine tumors indicated a significant
difference in race, which were ESCA, HNSC, KIRC, LIHC, LUAD,
LUSC, OV, SARC, and THCA (Figure 1D). The NI of women was
higher than men in HNSC, LUAD, and STAD but lower in LIHC
(Supplementary Figure S1G). Finally, we performed cox model of NI in
pan-cancer. The result showed that ACC, GBM, LGG, LIHC, MESO,
PAAD, SARC, SKCM, STAD, THCA, and THYM were obviously
meaningful and had prognostic value (Supplementary Figure S1F).

Frontiers in Pharmacology frontiersin.org04

Ma et al. 10.3389/fphar.2023.1170240

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1170240


Association between necroptosis and
genetic alterations and pathways in tumors

We found that all of the NRGs were related to the prognosis of
patients in most tumor types, except PRAD, KIRP, READ, OV, UCS,
KICH, TGCT, and STAD (Figure 2A). This finding revealed that
NRGs were associated with the prognosis of most tumor patients. To

further explore the mutation profile of NRGs in tumors, the
proportion of somatic copy number alterations (SCNA) was
detected, and the results demonstrated that SCNA possess a high
rate (more than 5%) in most cancers (Figure 2B), but the SCNA
frequencies of NRGs were low in THCA. Furthermore, NRGs
displayed different SCNA profiles. For instance, FADD, FASLG,
RIPK1, RIPK3, and TNFwere more prone to copy number gain than

FIGURE 2
The dysregulation of necroptosis regulators. (A)The correlation between expression of necroptosis regulators and patient survival in pan-cancer. (B)
Histogram displays the rate of somatic copy number alterations for NRGs in pan-cancer. (C–E) Enrichment analysis for metabolism pathway (C), cancer
signaling (D), and hallmark gene sets (E) between high- and low-NI tumor tissues.
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loss in pan-cancer, but FAS and TLR3 displayed the reverse
tendency. To further clarify the association between the NI and
pathways, we applied GSEA to investigate the related cellular
signaling of necroptosis in tumors based on the RNA_seq of
tumors with the top and bottom 30% of NI. It was observed that
metabolism-related pathways in KEGG were usually enriched in
tumors with lower NI; pathways frequently enriched (>7 cancers)
are presented in Figure 2C. For example, T_cell_receptor_signaling_
pathway, Systemic lupus erythematosus, Primary_
immunodeficiency, JAK_STAT_SIGNALING_pathway, and
Intestinal_immune_network_for_iga_production were enriched in
the high-NI group in most cancers. Purine_metabolism, Mtor_
signaling_pathway, and Galactose_metabolism were also
significantly correlated with low-NI in all these cancer types,
which indicated that necroptosis was negatively related to these
metabolism-related pathways (Figure 2C). Furthermore, the
relationship between NI and cancer hallmarks were also
analyzed, and the results showed that 12 hallmarks were

frequently significantly correlated with NI (Figure 2E). For
example, INTERFERON_GAMMA_RESPONSE, INTERFERON_
ALPHA_RESPONSE, INTERFERON_ALPHA_RESPONSE, and
IL6_JAK_STAT3_SIGNALING were enriched in the high-NI
group. This indicated that necroptosis was positively related to
these cancer hallmarks. Finally, most oncogenic signatures were
also significantly negative with low-NI in pan-cancer. These results
are consistent with necroptosis activating tumor immunity and
inhibiting tumor growth (Figure 2D). We analyzed the
relationship between amplification (AMP), deletion (DEL),
mutation rate, and their expression values of these eight genes in
Figures 3A–D. Figure 3A showed the expression of eight genes in
pan-cancer, Figure 3B displayed the AMP of eight genes in pan-
cancer, Figure 3C revealed the DEL of eight genes in pan-cancer, and
Figure 3D showed the mutation rate of eight genes in tumor. From
the above results, we found that the expression of NRGs with CNV
AMP was significantly higher in cancer cells (e.g., FADD, FASLG,
RIPK3, and TNF), while the expression of NRGs with CNVDELwas

FIGURE 3
The relationship between AMP, DEL, mutation rate, and their expression values of NRGs. (A) The expression of NRGs in pan-cancer. (B) The AMP of
NRGs in pan-cancer. (C) The DEL of NRGs in pan-cancer. (D) The mutation rate of NRGs in pan-cancer. (E) The correlation between the expression and
CNV in NRGs.
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FIGURE 4
Performance of NI in pan-cancers. (A) Relationship between the immune cells and NI in pan-cancer. (B)Correlations between the NI and ESTIMATE
score in pan-cancer. (C) Association between the NI and stemness indices in pan-cancer. (D) Correlations between the NI and NRG in pan-cancer.
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significantly lower (e.g., RIPK1 and TNF). The expression values of
FADD, MLKL, RIPK1, and TLR3 were positively correlated with
their CNV, while FASLG, RIPK3, and TNF were the opposite
(Figure 3E). In conclusion, these findings implied that crosstalk
among the NRGs plays a crucial role in the development and
progression of most cancer types.

The efficacy of the NI across tumor types

Considering the solid relationship between necroptosis and
signaling pathways described above, we further investigated the
potency of the NI in different cancer types. We calculated the
relationship between the 28 kinds of immune cells and NI and
discovered a significant correlation among all tumor types. The
percentage of Tregs, T cells follicular helper, T cells CD8, T cells
CD4 memory active, NK cells activated, Macrophages M1, and
naive B cells were relevant to the NI of most tumor types
(Figure 4A; Supplementary Table S2). Interestingly, these cells
were antitumor types, suggesting, to some extent, that the NI
facilitates tumor immunity. Furthermore, we found a significant
correlation between NI and stem cell indices for cancer types,
except for BRCA, CHOL, COAD, and OV (Figure 4C;
Supplementary Table S3). Meanwhile, we also observed an
significant association between the Estimate score and the NI
in all tumors (Figure 4B; Supplementary Table S4). We
investigated the relationship of NRGs with NI and found that
NRGs were significantly positively correlated with NI (Figure 4D;
Supplementary Table S5). Finally, we found that NI was
significantly correlated with the prognosis of patients in nine
tumors: STAD, MESO, GBM, SKCM, LIHC, LGG, ACC, KIRC,
and THYM. This result revealed that NI could significantly affect
the prognosis of tumor patients (Supplementary Figures S1A–C;
Supplementary Table S6). Significant indicators reflecting the
reaction to immune checkpoint therapy can be broadly classified
into two types: microsatellite instability (MSI) or TMB, and
inflammatory infiltrating. The radar plots indicated significant
correlation between NI and TMB in 16 tumors (Supplementary
Figure S1D). Subsequently, we examined the association between
NI and MSI and discovered that COAD displayed the largest
positive relevance. These findings may indicate excessive T cell
infiltration in DLBC (Supplementary Figure S1E). By analyzing
the two immune-related indicators, the correlation between the
indicators and reaction was reversed in some tumors. This
phenomenon might be related to the heterogeneity of immune
infiltration among cancers. For instance, PAAD had a highly
positive relevance with TMB and a negative relevance with MSI
values, which may be associated with the nontypical
immunogenicity of PAAD. The results of these pan-cancer
analyses demonstrated the immunological, mutational, and
prognostic value of NI in a variety of tumors.

The landscape of NRGs in glioma

In Figure 2A, we found a clear effect of NRGs on the
prognosis of glioma. Thus, we further explored the role of
NRGs in glioma and found that the alterations of all NRGs

were common and mainly focused on copy number
amplification (Supplementary Figure S2B). We identified the
alterations in CNV characteristics of all the NRGs on the
chromosome. These findings revealed that the CNV state of
all NRGs is associated with the proliferation and development
of glioma. We further investigated the relevance of the NRGs
and found that RIPK3 was significantly correlated with other
genes, with the highest coefficient of correlation (0.8) between
RIPK3 and MLKL (Supplementary Figure S2C). In addition, we
studied the correlation between the expression patterns of
NRGs and molecular features. Of the NRGs, seven genes
showed a significant difference between normal tissues and
glioma, while RIPK3 did not (Supplementary Figure S2D).
The NRGs were distinct in groups classified according to
IDHmut subtypes except RIPK3 (Supplementary Figure S2E).
Of the NRGs, seven revealed remarkable distinctions among
WHO classification, except TNF (Supplementary Figure S2F).
The mutation frequency of NRGs in the 660 samples was 1.52%,
and were mostly missense mutations. MLKL exhibited the
greatest mutation rate, followed by other NRGs which did
not show any mutations in glioma samples (Supplementary
Figure S2G). We performed PCR validation of NRGs and
found that all genes except RIPK3 were significantly different
between tumor and normal tissues (Supplementary Figure S2H;
Supplementary Table S7). This result is consistent with the
expression of NRGs in the TCGA, indicating the stability of the
expression of NRGs. As a result of these findings, we found
significant differences in the expression of NRGs, which may
play critical roles in glioma development.

Associations between the NI and clinical
features

By applying the ssGSEA algorithm, the NI was computed
according to the RNA sequence of 698 glioma samples and then
ranked from lowest to highest to investigate the association
between molecular classification and clinical characteristics
(Figures 5A, B). As displayed in Figure 5C, the NI of male
patients was significantly higher than female patients, and the
NI in dead patients was obviously higher than in alive patients,
which suggests that NI could reflect the prognosis of glioma
patients. NI was significantly higher in patients older than
80 years than in those younger than 80 years. Patients with
1p19q codes had significantly lower NI than those with non-
codes. The patients were significantly higher in IDH-mutant
and ATRX-mutant samples than in wild-type samples. As
shown in Figure 5D, NI in patients increased significantly
with the increase of tumor grade, all of which were
statistically significant. Patients aged 60–79 years had
significantly higher NI than 40–59 and <40 patients.
Meanwhile, there was no significant difference between
groups in NI values in the ≥80 group. Among the WHO
classification, the GBM had the highest NI, followed by
astrocytoma, oligoastrocytoma, and oligodendroglioma.
Furthermore, patients with IDHwt subtype demonstrated
higher NI than IDHmut-non-codel and IDHmut-codel. These
results suggest that NI is positively correlated with the
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FIGURE 5
Clinical and molecular characteristics of glioma associated with NI. (A,B) A comprehensive analysis of the relationship between NI and
clinicopathological characteristics of patients. (C) Violin plots of NI in glioma patients, stratified by gender, age, ATRX mutation, IDH mutation, TERX
mutation, OS status, and 1p19q codel. (D) Violin plots of NI in glioma patients, stratified by grades, IDH mutation, ages, and histological classification.

Frontiers in Pharmacology frontiersin.org09

Ma et al. 10.3389/fphar.2023.1170240

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1170240


FIGURE 6
Relationship between NI and immune subgroups of gliomas. (A) The immune subgroups of glioma were classified based on the overall immune
activity of glioma. (B) Quantitative analysis of the proportion of immune checkpoint in three immune subtypes. (C–F) Quantitative analysis of NI and
ESTIMATE score in three immune subtypes.
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malignancy and age of glioma and can reflect the condition and
prognosis of glioma patients.

Associations between the NI and immune
microenvironment

The ssGSEA scores of 29 immune cells were sorted into three
immune subgroups using hierarchical clustering. 229 cases (32.8%)
had the highest enrichment scores and were considered as high
immune group and “hot immune” tumors. 203 cases (29%) had the
lowest enrichment scores and were considered as low immune group
and “cold immune” tumors. 353 cases (50.5%) had the medium
enrichment scores and were considered as medium immune group
and “altered immune” tumors, indicating the potential to conversion
to cold or hot tumors (Figures 6A,B). The immune checkpoints in
high immunity group was higher than other groups. Then, we
further investigated the relationship between NI and immunity.
The NI was significantly positively correlated with the immune score
and stromal score, indicating that, as the NI of glioma increased, the
level of infiltration of immune cells and stromal cells increased
(Supplementary Figures S3C, E). However, significant negative
correlation between NI and tumor purity was observed
(Supplementary Figure S3D). Then, the enrichment scores of
22 kinds of immune cells and immune checkpoints were
quantified by the ggplot (Supplementary Figures S3A, B). The
results revealed the high immune group had the highest scores of
immune cells and immune checkpoints, followed by medium and
low immune groups. In addition, the immune score and stromal
score were both the highest in high immune subgroups, indicating
high enrichment scores of stromal cells and immune cells, followed
by medium and low immune subgroups (Figures 6C, D). By
contrast, tumor purity increases gradually from high to low
immune subgroups, and NI gradually decreases. Moreover, the
NI in high immunity was higher than other two groups (Figures
6E, F). From the above findings, we suggest the NI has significant
association with the immune status of glioma.

Identification of two NI subgroups with
different OS and clinical characteristics

We performed DEGs between high and low groups of NI with
limma package and obtained 4,645 DEGs and performed univariate
and multivariate cox to obtain 125 DEGs. Then, we used consensus
clustering to discover a new classification of glioma on the basis of
the RNA sequence of 125 necroptosis-related DEGs. Based on the
CDF curve, the consensus heatmap, and the PAC algorithm, the best
number of clusters was identified as two (k = 2) (Supplementary
Figures S4A–C). We also displayed the clusters (k = 2–6) in
Supplementary Figures S5A–F. Therefore, glioma patients were
classified into two subgroups, which were termed NI subgroup I
(359 patients, 51.4%) and NI subgroup II (339 patients, 48.6%).
Glioma patients in the NI subgroup II presented superior OS than
those in the NI subgroup I in the TCGA and CGGA (Supplementary
Figures S4I, J). Then, we found a significantly lower number of high-
grade patients in the NI subgroup II than in the NI subgroup I, as
well as a higher proportion of deaths, a higher number of patients

with IDHmutation, a higher number of patients with 1p19q codel, a
higher percentage of MGMT methylation, and a higher percentage
of ATRX (Supplementary Figures S3F, S4D–H). For the original
subgroup and methylation subgroup, the proportions of idhmuton-
codel and IDHmutnon-codel in NI subgroup II were higher than
other types, and the proportions of codel and G-CIMP-high in NI
subgroup II were higher than other types (Supplementary Figures
S3G, H).

Identification of the characteristic of NI
subgroups with immunity

In the previous studies, depleted immune and active immune
subgroups differed significantly in B cells, cytolytic activity, and M1/
M2 macrophages, but not in cytotoxic cells, CD8T cells, and T cells.
Immune-active subtypes are strongly associated with immune-
active pathways and gene sets, and immune-depleted subgroups
are closely related to tumor-promoting signals that restrain host
immune response, like activation of the Wnt/TGFβ1 signaling
pathway (Chen et al., 2019). To investigate the correlation
between NI subgroups and tumor immunity, we investigated the
abundance of immune cells’ infiltration in NI subgroups and found
that activated B cells, activated CD4 T cells, and activated
CD8 T cells were significantly higher in NI subgroups I than in
NI subgroups II (Figures 7A, B). Immune score and Stromal score in
NI subgroup I are significantly higher than NI subgroup II, while
tumor purity is the reverse (Figures 7C–E). These results suggest that
NI subgroups were closely associated with tumor immunity.

Identification of the characteristic of NI
subgroups with mutation

Prior research confirmed the potential role of mutation in
regulating tumor immunity (Rooney et al., 2015; Thorsson et al.,
2018). Therefore, we performed CNA and somatic mutation
profiling to investigate the different mutation status in the two
NI subgroups. As displayed in Supplementary Figures S6A, B, NI
subgroup I had a higher mutation rate (90.88%) than NI
subgroup II (95.02%) (Supplementary Figures S6A, B). The
IDH1 mutation rate was higher in NI subgroup II (82%) than
NI subgroup I (36%), IDH1 mutation dramatically indicated the
outcome of glioma patients, so the distinction in IDH1 mutation
between two cluster subgroups may contribute to the prognosis
of glioma. Moreover, we examined the landscape of co-
occurrence using the top 25 mutation genes with the
comet algorithm. Twelve pair cases (EGFR-TP53, MUC16-
TP53, PTEN-IDH1, EGFR-IDH1, NF1-IDH1, PTEN-ATRX,
EGFR-ATRX, ATRX-CIC, ATRX-FUBP1, ATRX-PIK3CA,
TP53-CIC, TP53-FUBP1, TP53-NOTCH1, TP53-ZBTB20,
IDH1-IDH2, IDH-EGFR, and IDH1-PTEN) were compared
with prevalent mutually exclusive mutations, indicating that
they may have a superfluous impact on the common pathway
and a selected advantage of retaining the mutation copy between
them (Supplementary Figure S6E). After detecting RNA sequence
alterations in both subgroups, we further explored genomic-level
distinctions between the two NI subgroups. Somatic mutation,

Frontiers in Pharmacology frontiersin.org11

Ma et al. 10.3389/fphar.2023.1170240

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1170240


including single nucleotide variants, insertions, single nucleotide
polymorphisms (SNP), and deletions, were computed and
visualized applying the “maftools” package. The SNPs and
Total in NI subgroup I were also exceeded by those in NI

subgroup II (Supplementary Figure S6H). More interesting is
that several genes had distinct mutation rates between the two
cohorts. In terms of outcomes, the top 10 genes were shown in
Supplementary Figure S6I. Furthermore, IDH1 is another classic

FIGURE 7
Distinct immune patterns of two NI subgroups. (A)Quantitative analysis of ESTIMATE score between two NI subgroups. (B)Quantitative analysis of
the proportion of immune cells in two subgroups. (C–E) The expression levels of ESTIMATE score in NI subgroup I and II.
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example demonstrating the distinct mutation sites between two
cohorts (Supplementary Figures S6C, D) and the plausible chain
reaction of the variance in prognostic effect. Eventually, we
evaluated driver genes for the two NI subgroups, and the
findings indicated that the dominant driver genes of NI
subgroup I were PLCH2 and IDH1, meanwhile, the driver
genes of NI subgroup II subgroup were IDH1 and IDH2
(Supplementary Figure S6G). Moreover, the samples in the NI
subgroup I have remarkably higher enrichment scores of variant
allele fractions than those in the NI subgroup II (Supplementary
Figure S6F), which had been thought to be linked to cancer
progression and worse prognosis.

Comparison of DEGs in the two NI
subgroups

Given the prognostic distinctions between the high and low
subgroups, we investigated DEGs between the two subgroups.
4,645 DEGs were identified: 2,219 genes were upregulated and
2,426 genes downregulated in the high NI group. The most
upregulated genes were BRSK2, MAST1, CTIF, JPH4, ADGRL1,
SCAMP5, SLC25A27, CRIPAP1, USP11, and RUNDC3A, while
the most downregulated genes were ARHGDIB, TMEM109,
LAT2, HLA-DMA, SPI1, SASH3, LYN, CXCL16, NAGA, and
FERMT3 (Supplementary Figure S4K).

Construction and validation of the NI
subgroups predictor

The samples were aggregated in a scale-free network using
WGCNA algorithm, and 4,645 DEGs co-expression modules
were found (Supplementary Figure S7C). The obtained topology
matrix was clustered based on the β value to the proximity and
topology matrix and based on the differences between genes. The
hierarchical clustering method was applied to generate the gene
dendrogram. An assignment of modules identified by dynamic
cutting tree is shown in the colorful rows at the bottom of the
tree diagram (Supplementary Figure S7A). Closed modules were
merged into new modules, and the characteristic genes were
calculated for each module. As shown in Supplementary Figure
S7B, a total of 4,645 DEGs were divided into 24 modules. Since the
ME yellow module (GS > 0.5, MM > 0.8) had the highest correlation
with NI, we performed a NI subgroups predictor screen for genes in
this module. The yellow module obtained 125 genes significantly
associated with NI; we then performed multi-cox and lasso
regression on 125 genes, and finally obtained 10 hub genes: C3,
DOK3, FCER1G, FCGR2A, FCGR3A, GNA15, IL10RA, LRRC25,
RGS19, and WAS (Supplementary Figure S7D). We performed
model construction based on risk coefficients for these 10 hub
genes and found that patients in the low-risk group had
significantly higher survival than the high-risk group in the
TCGA and CGGA cohorts (Supplementary Figures S7E, F).
Finally, timeROC analysis in the TCGA cohort showed that the
AUC is greater than 0.79 at 1, 3, 5, and 7 years and greater than
0.74 in the TCGA and CGGA cohorts (Supplementary Figures
S6G, H).

Clinical application of NI subgroup

Different NI subgroups should contribute to the clinical
treatment of glioma. Therefore, we calculated the sensitivity of
the two NI subgroups for 30 anticancer drugs to identify
appropriate agents for glioma treatment by using the pRRophetic
algorithm. 24 chemotherapeutic drugs had obviously distinct
IC50 in the two NI subgroups (Supplementary Figure S8A;
Supplementary Table S8). Then, subclass mapping algorithm was
employed to forecast the outcome for ICI therapy, containing
CTLA4 and PD1 inhibitors. We discovered that the NI subgroup
I has a better outcome in anti-PD1 therapy (Supplementary Figure
S8B; Supplementary Table S9).

Discussion

Necroptosis is a specific form of cellular necrotic death mediated
mainly by MLKL, RIP1, and RIP3 (Gong et al., 2019; Martens et al.,
2021). In tumor therapy, necroptosis can be used as a programmed
death modality to avoid apoptosis resistance and enhance anti-
tumor immunity (Frank and Vince, 2018; Sprooten et al., 2020).
Nevertheless, there is an absence of comprehensive studies on
necroptosis and NRGs in pan-cancer. In present research, we
utilized multiomics and clinical features from TCGA to reveal
overall alterations of NRGs at genetic, transcriptional, and
epigenetic levels. We also processed expression data using
ssGSEA to construct NI to feature necroptosis and determine
which genes and non-gene factors are associated with NI.
Distinct molecular types affect the NI in most cancers, implying
that distinct molecular subgroups responding to therapy may be
associated with necroptosis.

It is unclear how necroptosis mediates glioma proliferation, but
the association we discovered between NI and cancer features could
increase the knowledge on necroptosis. GSEA revealed that the
degree of NI is strongly correlated with tumor-associated oncogenic
signaling pathway, cancer hallmarks, and metabolism-related
pathways in pan-cancer. NRGs can act as both oncogene and
tumor suppressor, and the NI plays the role of a protection or
risk factor in different tumors. We also discovered that some clinical
features affected necroptosis, like therapeutic response, survival
status, and immune phenotype. NI also differs between genders
in some tumors, including HNSC, LUAD, STAD, and LIHC, and
between races in HNSC, LUAD, ESCA, LIHC, LUSC, KIRC, OV,
THCA, SARC, and ESCA, implying the need to consider gender and
race when considering necroptosis as a treatment strategy. We also
observed that superior clinical outcome or status was also associated
with higher NI in several cancer types, which further confirmed the
double effect of necroptosis. Therefore, a distinct method of
modulating the necroptosis of tumor cells may be beneficial to
patients and enhance prognosis.

In addition, we found that most NRGs and NI were significantly
associated with the prognosis of GBM and LGG in Figure 2A, and we
went on to explore the effect played by NRGs in glioma. Then, we
thoroughly analyzed the relationship between the necroptosis of
glioma and the response of chemotherapy and immunotherapy, and
developed the method to differentiate subtypes based on
necroptosis. First, we applied the ssGSEA to construct the NI in
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1716 glioma samples from a public database. We classified the
glioma patients into two subgroups on the basis of their NI and
compared their clinical characteristics to identify the relationship
between the NI subgroups and clinical characteristics. ICI therapy,
especially anti-PD1 therapy, can obtain better treatment results in
NI subgroup I, as predicted by the subclass mapping algorithm,
while chemotherapeutic agents are effective, as predicted by the
pRRophetic algorithm. Furthermore, to distinguish clinical value
between these two NI subgroups, we identified the 10 crucial
necroptosis subgroup-related DEGs by lasso, univariate, and
multivariate cox, and regarded them as predictors of necroptosis
subgroup. The 10 genes were C3, DOK3, FCER1G, FCGR2A,
FCGR3A, GNA15, IL10RA, LRRC25, RGS19, and WAS.

Although the central nervous system is a relatively specific
immune region, immunotherapy has been extensively
investigated for glioma in recent years, mainly containing cellular
immunotherapy, ICI, and anti-tumor vaccines. Nevertheless, the
efficacy of these phase III clinical trials in GBM have been
unsatisfactory compared with other tumors (Weller et al., 2017;
Reardon et al., 2020). There are numerous parameters that influence
the efficacy of GBM immunotherapy. In the case of PD-L1/PD-
1 blockade therapy, the expression level of TMB, tumor-infiltrating
lymphocytes, PD-L1, and mismatch repair deficiency can all
influence ICI therapy (Wang et al., 2019; Touat et al., 2020). But
in the current phase III clinical trials, there was no screening of
glioma patients for these elements, and this non-distinctive therapy
may also account for the failure of these trials, which is a concern for
future studies.

In response to the above-mentioned challenges in
immunotherapy, this research presented a novel categorization of
glioma on the basis of necroptosis. We observed that NI subgroup I
presented higher NI and was more responsive to immunotherapy,
which offered a novel way of selecting patients who were appropriate
for immunotherapy. This study analyzed potential anti-glioma
compounds in the “pRRophetic” package. For NI subgroup I,
Gemcitabine, Bortezomib, Midostaurin, Lapatinib, Rapamycin,
Tipifarnib, Etoposide, Embelin, Roscovitine, Docetaxel,
Bexarotene, Pazopanib, and Dasatinib were reconsidered as the
targeted drugs. In the case of NI subgroup II, Gefitinib, Axitinib,
and Bosutinib were identified as the potential targeted drugs. These
are the anti-tumor drugs approved by the FDA for future screening
of anti-glioma drugs. Despite the absence of studies on drugs and
immunotherapy, our analysis confirmed the validity of drug
screening and the clinical translation of drug response to glioma
treatment.

Ferroptosis, cuproptosis, and necroptosis are all important cell
death modalities that play an important role in the tumor
microenvironment (Shen et al., 2022; Xie et al., 2022; Zhang
et al., 2023). It was found that ferroptosis could be involved in
tumorigenesis, progression, and activation of different regulatory
sites in the ferroptosis pathway and could promote tumor cell death.
Related studies have shown that cuproptosis is involved in most
mechanisms of tumorigenesis andmetastasis and complicates tumor
immune escape. Tumor cells undergo necrosis as a self-sacrificing
strategy to create a favorable environment for their proliferation and
metastasis, but necroptosis exerts tumor suppressive effects in most
cases. Studying the relationship between cell death and the tumor
microenvironment can further contribute to our understanding of

how different cell death modalities affect tumor development and
provide new ideas to inhibit tumor growth (Zou et al., 2022; Zou
et al., 2023).

We reviewed some related literature and found that they all present
systematic analysis of necroptosis mainly focusing on low-grade glioma
and breast cancer (Xie et al., 2022; Zou et al., 2022), and there is little
overall analysis of low-grade and high-grade gliomas.Moreover, previous
studies on gliomas have directly performedmodel construction using key
genes, and there is no integration of key genes’ enrichment scores to
comprehensively evaluate the role of necroptosis-related genes in tumors.

We calculated necroptosis index (NI) using eight necroptosis related
genes and found that it significantly responded to the prognosis of
patients by NI in most tumors. We also studied its prognosis, immune
environment, radiotherapy, and molecular-targeted therapy in glioma
patients, and obtained relatively satisfactory results. We performed PCR
validation of the expression of eight necroptosis genes in glioma samples,
and this cross-corroboration of database and experiment further
illustrates the reliability of our experiments.

Our analysis first correlated the role of necroptosis-related genes
in pan-cancer and further found that necroptosis was significantly
associated with the prognosis of glioma patients, and then further
analyzed the close relationship between necroptosis and glioma.
Such an analysis is more logical. However, our model has some
drawbacks. First, we need to test the expression of these eight key
genes in order to evaluate the prognosis of patients, and this
associated cost may be high. Second, although the CGGA
database has a considerable number of samples to validate the
conclusions, we need to develop the sample number of our
hospital in the future. Third, due to the very limited number of
patients receiving immunotherapy and our study being supported
by public databases, the relationship between immunotherapy and
NI subgroups needs to be investigated in future immunotherapy
cohorts.

Conclusion

In summary, there remains a great potential for immunotherapy
in glioma. Screening patients who may be more suitable for
immunotherapy is essential. In this research, we classified
patients into two distinct subtypes according to NI of glioma,
and predicted sensitivity of patients in two subgroups to
immunotherapy, offering a method for screening suitable patients
for immunotherapy. Our study also identified predictors of NI
subgroups, which makes it clinically feasible to translate NI.
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