321 research outputs found

    Nanoscale Nucleation and Growth of Non-Stoichiometric V-Shaped InP Defect in Heterogeneous InGaAsP/InP Array

    Get PDF
    Nanotechnology is a broad field that involves the manipulation of atoms and molecules. For nanophotonics, defect formation in nanostructured compound semiconductor system is of great technological interest. In this paper, we study the nanoscale nucleation and growth of V-shaped defect in the heterogeneous InGaAsP/InP array. We have observed that the nucleation originated from the phosphorus-deficient disordering that was likely induced by reactive ion etching. During the nucleation, the phosphorus-deficient In1+xP1-x compound was developed at the trench. The triangular nano-precipitates of In1+xP1-x with sizes of 20-30nm were formed. The ratio of In to P in the non-stoichiometric compound was higher in the upper portion of the V-defect, likely due to antisite defect mechanism. During the defect growth process, the phosphorus-deficient nucleation site expanded to form open, inverted pyramid with sidewalls following the crystallographic planes

    Six-membered ring systems: with O and/or S atoms

    Get PDF
    A large variety of publications involving O- and S-6-membered ring systems have appeared in 2017. The importance of these heterocyclic compounds is highlighted by the huge number of publications on the total synthesis of natural oxygen derivatives and of other communications dedicated to synthetic derivatives. Reviews on stereoselective organocatalytic synthesis of tetrahydropyrans (17EJO4666), of tetrahydropyrans and their application in total synthesis of natural products (17CSR1661), on the synthesis of the less thermodynamically stable 2,6-trans-tetrahydropyrans (17S4899), on enantioselective synthesis of polyfunctionalized pyran and chromene derivatives (17TA1462), and on enantioselective and racemic total synthesis of camptothecins, including the formation of their pyran-2-one ring (17SL1134), have appeared. Advances in the transition metal-catalyzed synthesis of pyran-2/4-ones (17TL263), N-heterocyclic carbene (NHC)-catalyzed achiral synthesis of pyran-2-one, coumarin and (thio)chromone derivatives (17OBC4731), on the synthesis and transformation of 2H-pyran-2-ones (17T2529) and 2-styrylchromones (17EJO3115) into other heterocyclic compounds, have been surveyed. The strategies to build up the tetrahydropyranyl core of brevisamide (17H(95)81) and the reactions of ketyl radicals, generated from carbonyl derivatives under transition-metal photoredox-catalyzed conditions, leading to isochromen- and chroman-type compounds (17CC13093) were disclosed. Developments in the synthesis of pentafluorosulfanyl(chromene and coumarin) derivatives (17TL4803), photoswitchable D9-tetrahydrocannabinol derivatives (17JA18206), and aminobenzopyranoxanthenes with nitrogen-containing rings (17JOC13626) have been studied.info:eu-repo/semantics/publishedVersio

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 × 106^{6} Ne, 2.2 × 106^{6} Mg, and 1.6 × 106^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays

    The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting a unique, long-duration mission of fundamental physics research in space. The physics objectives include the precise studies of the origin of dark matter, antimatter, and cosmic rays as well as the exploration of new phenomena. Following a 16-year period of construction and testing, and a precursor flight on the Space Shuttle, AMS was installed on the ISS on May 19, 2011. In this report we present results based on 120 billion charged cosmic ray events up to multi-TeV energies. This includes the fluxes of positrons, electrons, antiprotons, protons, and nuclei. These results provide unexpected information, which cannot be explained by the current theoretical models. The accuracy and characteristics of the data, simultaneously from many different types of cosmic rays, provide unique input to the understanding of origins, acceleration, and propagation of cosmic rays

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run (O3). In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive sub-band, starting at 256.06256.06Hz, we report an upper limit on gravitational wave strain (at 95%95 \% confidence) of h095%=6.16×1026h_{0}^{95\%}=6.16\times10^{-26}, assuming the orbital inclination angle takes its electromagnetically restricted value ι=44\iota=44^{\circ}. The upper limits on gravitational wave strain reported here are on average a factor of 3\sim 3 lower than in the O2 HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain sub-bands, assuming ι=44\iota=44^{\circ}

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    corecore