165 research outputs found

    Homeostasis and function of regulatory T cells (Tregs) in vivo:lessons from TCR-transgenic Tregs

    Get PDF
    The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important

    Specific Immunosuppression with Inducible Foxp3-Transduced Polyclonal T cells

    Get PDF
    Forkhead box p3 (Foxp3)-expressing regulatory T cells are key mediators of peripheral tolerance suppressing undesirable immune responses. Ectopic expression of Foxp3 confers regulatory T cell phenotype to conventional T cells, lending itself to therapeutic use in the prevention of autoimmunity and transplant rejection. Here, we show that adoptive transfer of polyclonal, wild-type T cells transduced with an inducible form of Foxp3 (iFoxp3) can be used to suppress immune responses on demand. In contrast to Foxp3-transduced cells, iFoxp3-transduced cells home ā€œcorrectlyā€ into secondary lymphoid organs, where they expand and participate in immune responses. Upon induction of iFoxp3, the cells assume regulatory T cell phenotype and start to suppress the response they initially partook in without causing systemic immunosuppression. We used this approach to suppress collagen-induced arthritis, in which conventional Foxp3-transduced cells failed to show any effect. This provides us with a generally applicable strategy to specifically halt immune responses on demand without prior knowledge of the antigens involved

    The role of PKCzeta in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil

    Get PDF
    While immunodeficiency of immaturity of the neonate has been considered important as the basis for unusual susceptibility to infection, it has also been recognized that the ability to progress from an immature Th2 cytokine predominance to a Th1 profile has relevance in determining whether children will develop allergy, providing an opportunity for epigenetic regulation through environmental pressures. However, this notion remains relatively unexplored. Here, we present evidence that there are two major control points to explain the immunodeficiency in cord blood (CB) T-cells, a deficiency in interleukin (IL)-12 (IL-12) producing and IL-10 overproducing accessory cells, leading to a decreased interferon Ī³ (IFNĪ³) synthesis and the other, an intrinsic defect in T-cell protein kinase C (PKC) Ī¶ (PKCĪ¶) expression. An important finding was that human CB T-cells rendered deficient in PKCĪ¶, by shRNA knockdown, develop into low tumour necrosis factor Ī± (TNFĪ±) and IFNĪ³ but increased IL-13 producing cells. Interestingly, we found that the increase in PKCĪ¶ levels in CB T-cells caused by prenatal supplementation with fish oil correlated with modifications of histone acetylation at the PKCĪ¶ gene (PRKCZ) promoter. The data demonstrate that PKCĪ¶ expression regulates the maturation of neonatal T-cells into specific functional phenotypes and that environmental influences may work via PKCĪ¶ to regulate these phenotypes and disease susceptibility.Hani Harb, James Irvine, Manori Amarasekera, Charles S. Hii, Dƶrthe A. Kesper, YueFang Ma, Nina Dā€²Vaz, Harald Renz, Daniel P. Potaczek, Susan L. Prescott and Antonio Ferrant

    Continuous Activation of the CD122/STAT-5 Signaling Pathway during Selection of Antigen-Specific Regulatory T Cells in the Murine Thymus

    Get PDF
    Signaling events affecting thymic selection of un-manipulated polyclonal natural CD25+foxp3+ regulatory T cells (nTreg) have not been established ex vivo. Here, we report a higher frequency of phosphorylated STAT-5 (pSTAT-5) in nTreg cells in the adult murine thymus and to a lesser extent in the periphery, compared to other CD4+CD8āˆ’ subsets. In the neonatal thymus, the numbers of pSTAT-5+ cells in CD25+foxp3āˆ’ and nTreg cells increased in parallel, suggesting that pSTAT-5+CD25+foxp3āˆ’ cells might represent the precursors of foxp3+ regulatory T cells. This ā€œspecificā€ pSTAT-5 expression detected in nTreg cells ex vivo was likely due to a very recent signal given by IL-2/IL-15 cytokines in vivo since (i) it disappeared rapidly if cells were left unstimulated in vitro and (ii) was also observed if total thymocytes were stimulated in vitro with saturating amounts of IL-2 and/or IL-15 but not IL-7. Interestingly, STAT-5 activation upon IL-2 stimulation correlated better with foxp3 and CD122 than with CD25 expression. Finally, we show that expression of an endogenous superantigen strongly affected the early Treg cell repertoire but not the proportion of pSTAT-5+ cells within this repertoire. Our results reveal that continuous activation of the CD122/STAT-5 signaling pathway characterize regulatory lineage differentiation in the murine thymus

    Global, regional, and national prevalence of depression among cancer patients:A systematic review and meta-analysis

    Get PDF
    This systematic review and meta-analysis aimed to provide a summary of the existing evidence on the prevalence of depression among cancer patients worldwide to assist health policymakers in adopting appropriate measures to prevent and control depression in these patients. EMBASE, Google Scholar, Scopus, PubMed, and Web of Science databases were searched for original studies published in English from January 2000 to July 2019. The studies were screened on the basis of quality and relevance criteria. The statistical analyses were conducted in the R software. Out of 182,521 cancer patients examined in 183 studies, 49,280 (~27%) had depression (95% confidence interval [CI] = 24%-30%). The highest prevalence of depression was among patients with colorectal cancer with 32% (95% CI = 20%-47%). Among countries, Pakistan with 43% (95% CI = 26%-64%), and among continents, Africa with 36% (95% CI = 29%-43%) had the highest prevalence of reported depression in cancer patients. Adjusting for sample size, the prevalence of depression among female cancer patients, 31% (95% CI = 26%-36%), was higher than men, 26% (95% CI = 21%-31%). The prevalence of depression among cancer patients is increasing by an average of 0.6% per year. The findings show higher prevalence of depression among cancer patients in underdeveloped and developing countries compared to the developed nations and the global average

    Mechanisms of immunological tolerance in central nervous system inflammatory demyelination.

    Get PDF
    Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations

    The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases

    Get PDF
    Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes

    A Systems Model for Immune Cell Interactions Unravels the Mechanism of Inflammation in Human Skin

    Get PDF
    Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes

    Decreased Numbers of Blood Dendritic Cells and Defective Function of Regulatory T Cells in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis

    Get PDF
    BACKGROUND: Dendritic cells (DC) and regulatory cells (Treg) play pivotal roles in controlling both normal and autoimmune adaptive immune responses. DC are the main antigen-presenting cells to T cells, and they also control Treg functions. In this study, we examined the frequency and phenotype of DC subsets, and the frequency and function of Treg from patients with ANCA-associated vasculitis (AAV). METHODOLOGY/PRINCIPAL FINDINGS: Blood samples from 19 untreated patients with AAV during flares and before any immunosuppressive treatment were analyzed, along with 15 AAV patients in remission and 18 age-matched healthy controls. DC and Treg numbers, and phenotypes were assessed by flow cytometry, and in vitro suppressive function of Treg was determined by co-culture assay. When compared to healthy volunteers, absolute numbers of conventional and plasmacytoid DC were decreased in AAV patients. During the acute phase this decrease was significantly more pronounced and was associated with an increased DC expression of CD62L. Absolute numbers of Treg (CD4(+)CD25(high)CD127(low/-) Tcells) were moderately decreased in patients. FOXP3 and CD39 were expressed at similar levels on Treg from patients as compared to controls. The suppressive function of Treg from AAV patients was dramatically decreased as compared to controls, and this defect was more pronounced during flares than remission. This Treg functional deficiency occurred in the absence of obvious Th17 deviation. CONCLUSION: In conclusion, these data show that AAV flares are associated with both a decrease number and altered phenotype of circulating DC and point to a role for Treg functional deficiency in the pathogenesis of AAV

    Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment?

    Get PDF
    BACKGROUND: Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a recently discovered subset of T-lymphocytes with potent suppressive activity and pivotal roles in curtailing destructive immune responses and preventing autoimmune disease. METHODS: A systematic review was undertaken of the published literature on Treg cells in the ovary, testes, uterus and gestational tissues in pregnancy, and their link with infertility, miscarriage and pathologies of pregnancy. An overview of current knowledge on the generation, activation and modes of action of Treg cells in controlling immune responses is provided, and strategies for manipulating regulatory T-cells for potential applications in reproductive medicine are discussed. RESULTS: Studies in mouse models show that Treg cells are essential for maternal tolerance of the conceptus, and that expansion of the Treg cell pool through antigen-specific and antigen non-specific pathways allows their suppressive actions to be exerted in the critical peri-implantation phase of pregnancy. In women, Treg cells accumulate in the decidua and are elevated in maternal blood from early in the first trimester. Inadequate numbers of Treg cells or their functional deficiency are linked with infertility, miscarriage and pre-eclampsia. CONCLUSIONS: The potency and wide-ranging involvement of Treg cells in immune homeostasis and disease pathology indicates the considerable potential of these cells as therapeutic agents, raising the prospect of their utility in novel treatments for reproductive pathologies.Leigh R. Guerin, Jelmer R. Prins and Sarah A. Robertso
    • ā€¦
    corecore