119 research outputs found

    Comparative Health-Care Cost Advantage of Ipratropium over Tiotropium in COPD Patients

    Get PDF
    Objective: To compare the total direct health-care costs of patients treated with tiotropium and ipratropium. Methods: We conducted a cohort study of health-care costs in British Columbia, Canada, by comparing new patients on tiotropium with new patients on ipratropium. Direct health-care costs for study patients were measured in the first 2 years after initiating inhaled anticholinergic treatment. Differences in direct health-care costs between tiotropium and ipratropium patients were estimated by using quantile regression. We analyzed cost differences in the 10th percentile, median, and 90th percentile of patients by cost. High-dimensional propensity score analysis was used as a method of adjustment for potential confounding factors. Results: The study population had 3,140 tiotropium patients and 26,182 ipratropium patients. Higher health system costs in patients who started on tiotropium instead of ipratropium were observed in patients in the median and 10th percentile. The magnitude of these increases was comparable to the price difference between the two drugs. Health system costs in the 90th percentile were not significantly different between tiotropium and ipratropium patients. Conclusions: The results of this study did not support the preferential use of tiotropium over ipratropium as a basis for savings in direct health-care costs

    Large Scale Retrieval and Generation of Image Descriptions

    Get PDF
    What is the story of an image? What is the relationship between pictures, language, and information we can extract using state of the art computational recognition systems? In an attempt to address both of these questions, we explore methods for retrieving and generating natural language descriptions for images. Ideally, we would like our generated textual descriptions (captions) to both sound like a person wrote them, and also remain true to the image content. To do this we develop data-driven approaches for image description generation, using retrieval-based techniques to gather either: (a) whole captions associated with a visually similar image, or (b) relevant bits of text (phrases) from a large collection of image + description pairs. In the case of (b), we develop optimization algorithms to merge the retrieved phrases into valid natural language sentences. The end result is two simple, but effective, methods for harnessing the power of big data to produce image captions that are altogether more general, relevant, and human-like than previous attempts

    The fastest stars in the Galaxy

    Full text link
    We report a spectroscopic search for hypervelocity white dwarfs (WDs) that are runaways from Type Ia supernovae (SNe Ia) and related thermonuclear explosions. Candidates are selected from Gaia data with high tangential velocities and blue colors. We find six new runaways, including four stars with radial velocities (RVs) >1000kms1>1000\,\rm km\,s^{-1} and total space velocities 1300kms1\gtrsim 1300\,\rm km\,s^{-1}. These are most likely the surviving donors from double-degenerate binaries in which the other WD exploded. The other two objects have lower minimum velocities, 600kms1\gtrsim 600\,\rm km\,s^{-1}, and may have formed through a different mechanism, such as pure deflagration of a WD in a Type Iax supernova. The four fastest stars are hotter and smaller than the previously known "D6^6 stars," with effective temperatures ranging from \sim20,000 to \sim130,000 K and radii of 0.020.10R\sim 0.02-0.10\,R_{\odot}. Three of these have carbon-dominated atmospheres, and one has a helium-dominated atmosphere. Two stars have RVs of 1694-1694 and 2285kms1-2285\rm \,km\,s^{-1} -- the fastest systemic stellar RVs ever measured. Their inferred birth velocities, 22002500kms1\sim 2200-2500\,\rm km\,s^{-1}, imply that both WDs in the progenitor binary had masses >1.0M>1.0\,M_{\odot}. The high observed velocities suggest that a dominant fraction of the observed hypervelocity WD population comes from double-degenerate binaries whose total mass significantly exceeds the Chandrasekhar limit. However, the two nearest and faintest D6^6 stars have the lowest velocities and masses, suggesting that observational selection effects favor rarer, higher-mass stars. A significant population of fainter low-mass runaways may still await discovery. We infer a birth rate of D6^6 stars that is consistent with the SN Ia rate. The birth rate is poorly constrained, however, because the luminosities and lifetimes of D6\rm D^6 stars are uncertain.Comment: 26 pages, 17 figures. Accepted to OJ

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass

    Get PDF
    In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8−0.7+1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0−0.6+1.1×106 M ⊙

    Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI

    Get PDF
    The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin

    First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric

    Get PDF
    Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein’s equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within ∼10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign

    Get PDF
    The Event Horizon Telescope (EHT) observed the compact radio source, Sagittarius A* (Sgr A*), in the Galactic Center on 2017 April 5–11 in the 1.3 mm wavelength band. At the same time, interferometric array data from the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array were collected, providing Sgr A* light curves simultaneous with the EHT observations. These data sets, complementing the EHT very long baseline interferometry, are characterized by a cadence and signal-to-noise ratio previously unattainable for Sgr A* at millimeter wavelengths, and they allow for the investigation of source variability on timescales as short as a minute. While most of the light curves correspond to a low variability state of Sgr A*, the April 11 observations follow an X-ray flare and exhibit strongly enhanced variability. All of the light curves are consistent with a red-noise process, with a power spectral density (PSD) slope measured to be between −2 and −3 on timescales between 1 minute and several hours. Our results indicate a steepening of the PSD slope for timescales shorter than 0.3 hr. The spectral energy distribution is flat at 220 GHz, and there are no time lags between the 213 and 229 GHz frequency bands, suggesting low optical depth for the event horizon scale source. We characterize Sgr A*'s variability, highlighting the different behavior observed just after the X-ray flare, and use Gaussian process modeling to extract a decorrelation timescale and a PSD slope. We also investigate the systematic calibration uncertainties by analyzing data from independent data reduction pipelines
    corecore