9 research outputs found

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Maternal or neonatal infection: association with neonatal encephalopathy outcomes.

    No full text
    Perinatal infection may potentiate brain injury among children born preterm. The objective of this study was to examine whether maternal and/or neonatal infection are associated with adverse outcomes among term neonates with encephalopathy.This study is a cohort study of 258 term newborns with encephalopathy whose clinical records were examined for signs of maternal infection (chorioamnionitis) and infant infection (sepsis). Multivariate regression was used to assess associations between infection, pattern, and severity of injury on neonatal magnetic resonance imaging, as well as neurodevelopment at 30 mo (neuromotor examination, or Bayley Scales of Infant Development, second edition mental development index <70 or Bayley Scales of Infant Development, third edition cognitive score <85).Chorioamnionitis was associated with lower risk of moderate-severe brain injury (adjusted odds ratio: 0.3; 95% confidence interval: 0.1-0.7; P = 0.004) and adverse cognitive outcome in children when compared with no chorioamnionitis. Children with signs of neonatal sepsis were more likely to exhibit watershed predominant injury than those without (P = 0.007).Among neonates with encephalopathy, chorioamnionitis was associated with a lower risk of brain injury and adverse outcomes, whereas signs of neonatal sepsis carried an elevated risk. The etiology of encephalopathy and timing of infection and its associated inflammatory response may influence whether infection potentiates or mitigates injury in term newborns

    Maternal or neonatal infection:association with neonatal encephalopathy outcomes

    No full text
    BACKGROUND: Perinatal infection may potentiate brain injury among children born preterm. The objective of this study was to examine whether maternal and/or neonatal infection are associated with adverse outcomes among term neonates with encephalopathy. METHODS: Cohort study of 258 term newborns with encephalopathy whose clinical records were examined for signs of maternal infection (chorioamnionitis) and infant infection (sepsis). Multivariate regression was used to assess associations between infection, pattern and severity of injury on neonatal MRI, as well as neurodevelopment at 30 months (neuromotor exam, or Bayley Scales of Infant Development II MDI <70 or Bayley III cognitive score <85). RESULTS: Chorioamnionitis was associated with lower risk of moderate-severe brain injury (adjusted OR 0.3; 95% CI 0.1–0.7, P=0.004), and adverse cognitive outcome in children when compared to no chorioamnionitis. Children with signs of neonatal sepsis were more likely to exhibit watershed predominant injury than those without (P=0.007). CONCLUSIONS: Among neonates with encephalopathy, chorioamnionitis was associated with a lower risk of brain injury and adverse outcomes, whereas signs of neonatal sepsis carried an elevated risk. The etiology of encephalopathy and timing of infection and its associated inflammatory response may influence whether infection potentiates or mitigates injury in term newborns

    Molecular characterization of colorectal adenomas reveals POFUT1 as a candidate driver of tumor progression

    No full text
    Removal of colorectal adenomas is an effective strategy to reduce colorectal cancer (CRC) mortality rates. However, as only a minority of adenomas progress to cancer, such strategies may lead to overtreatment. The present study aimed to characterize adenomas by in-depth molecular profiling, to obtain insights into altered biology associated with the colorectal adenoma-to-carcinoma progression. We obtained low-coverage whole genome sequencing, RNA sequencing and tandem mass spectrometry data for 30 CRCs, 30 adenomas and 18 normal adjacent colon samples. These data were used for DNA copy number aberrations profiling, differential expression, gene set enrichment and gene-dosage effect analysis. Protein expression was independently validated by immunohistochemistry on tissue microarrays and in patient-derived colorectal adenoma organoids. Stroma percentage was determined by digital image analysis of tissue sections. Twenty-four out of 30 adenomas could be unambiguously classified as high risk (n = 9) or low risk (n = 15) of progressing to cancer, based on DNA copy number profiles. Biological processes more prevalent in high-risk than low-risk adenomas were related to proliferation, tumor microenvironment and Notch, Wnt, PI3K/AKT/mTOR and Hedgehog signaling, while metabolic processes and protein secretion were enriched in low-risk adenomas. DNA copy number driven gene-dosage effect in high-risk adenomas and cancers was observed for POFUT1, RPRD1B and EIF6. Increased POFUT1 expression in high-risk adenomas was validated in tissue samples and organoids. High POFUT1 expression was also associated with Notch signaling enrichment and with decreased goblet cells differentiation. In-depth molecular characterization of colorectal adenomas revealed POFUT1 and Notch signaling as potential drivers of tumor progression

    Maternal or neonatal infection: association with neonatal encephalopathy outcomes

    No full text
    BACKGROUND: Perinatal infection may potentiate brain injury among children born preterm. The objective of this study was to examine whether maternal and/or neonatal infection are associated with adverse outcomes among term neonates with encephalopathy. METHODS: Cohort study of 258 term newborns with encephalopathy whose clinical records were examined for signs of maternal infection (chorioamnionitis) and infant infection (sepsis). Multivariate regression was used to assess associations between infection, pattern and severity of injury on neonatal MRI, as well as neurodevelopment at 30 months (neuromotor exam, or Bayley Scales of Infant Development II MDI <70 or Bayley III cognitive score <85). RESULTS: Chorioamnionitis was associated with lower risk of moderate-severe brain injury (adjusted OR 0.3; 95% CI 0.1–0.7, P=0.004), and adverse cognitive outcome in children when compared to no chorioamnionitis. Children with signs of neonatal sepsis were more likely to exhibit watershed predominant injury than those without (P=0.007). CONCLUSIONS: Among neonates with encephalopathy, chorioamnionitis was associated with a lower risk of brain injury and adverse outcomes, whereas signs of neonatal sepsis carried an elevated risk. The etiology of encephalopathy and timing of infection and its associated inflammatory response may influence whether infection potentiates or mitigates injury in term newborns

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018) : a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
    corecore