69 research outputs found

    Mapping Soils in Ireland

    Get PDF
    peer-reviewedThis project is jointly funded by Teagasc and EPA STRIVE funding.Harmonised soil data across Europe with a 1:250 000 geo-referenced soil database will allow for exchange of data across member states and the provide the information needed for reporting on issues re-lating to soil quality under a future Soil Framework Directive. The current status of soils data available in Eu-rope is inconsistent at best. The Irish Soil Information System (ISIS) project is currently developing a national soil map of 1:250,000 and an associated digital soil information system, providing both spatial and quantita-tive information on soil types and properties across Ireland. Both the map and the information system will be freely available to the public through a designated website.This project is jointly funded by Teagasc and EPA STRIVE funding

    Fostering Program Comprehension in Novice Programmers - Learning Activities and Learning Trajectories

    Get PDF
    This working group asserts that Program Comprehension (ProgComp) plays a critical part in the process of writing programs. For example, this paper is written from a basic draft that was edited and revised until it clearly presented our idea. Similarly, a program is written incrementally, with each step tested, debugged and extended until the program achieves its goal. Novice programmers should develop program comprehension skills as they learn to code so that they are able both to read and reason about code created by others, and to reflect on their code when writing, debugging or extending it. To foster such competencies our group identified two main goals: (g1) to collect and define learning activities that explicitly address key components of program comprehension and (g2) to define tentative theoretical learning trajectories that will guide teachers as they select and sequence those learning activities in their CS0/CS1/CS2 or K-12 courses. The WG has completed the first goal and laid down a strong foundation towards the second goal as presented in this report. After a thorough literature review, a detailed description of the Block Model is provided, as this model has been used with a dual purpose, to classify and present an extensive list of ProgComp tasks, and to describe a possible learning trajectory for a complex task, covering different cells of the Block Model matrix. The latter is intended to help instructors to decompose complex tasks and identify which aspects of ProgComp are being fostered

    RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals

    Get PDF
    DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre–B cell receptor (pre–BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre–BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre–B cells. Here, we show that RAG DSBs inhibit pre–BCR signals through the ATM- and NF-ÎșB2–dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre–BCR signaling. This regulatory circuit prevents the pre–BCR from inducing additional Igl chain gene rearrangements and driving pre–B cells with RAG DSBs into cycle. We propose that pre–B cells toggle between pre–BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes

    Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia

    Get PDF
    Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p <1 x 10(-8)) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 x 10(-9)), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 x 10(-8)). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 x 10(-8)) and with all the cognitive traits tested (p = 3.07 x 10(-8)), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p similar to [10(-5)-10(-7)]) and negatively associated with ADHD PRS (p similar to [10(-8)-10(-17)]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.Peer reviewe

    Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia

    Get PDF
    Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 x 10(-8)) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene;rs17663182 p = 4.73 x 10(-9)), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter;rs16928927, p = 2.25 x 10(-8)). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 x 10(-8)) and with all the cognitive traits tested (p = 3.07 x 10(-8)), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p similar to [10(-5)-10(-7)]) and negatively associated with ADHD PRS (p similar to [10(-8)-10(-17)]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities

    Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia

    Get PDF
    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p <2.8 x 10(-6)) enrichment of associations at the gene level, forLOC388780(20p13; uncharacterized gene), and forVEPH1(3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (atp(T) = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase;p = 8 x 10(-13)), bipolar disorder (1.53[1.44; 1.63];p = 1 x 10(-43)), schizophrenia (1.36[1.28; 1.45];p = 4 x 10(-22)), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30];p = 3 x 10(-12)), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96];p = 5 x 10(-4)), educational attainment (0.86[0.82; 0.91];p = 2 x 10(-7)), and intelligence (0.72[0.68; 0.76];p = 9 x 10(-29)). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.Peer reviewe

    THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 : G protein- coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.Peer reviewe

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD

    The Aromatase Gene CYP19A1: Several Genetic and Functional Lines of Evidence Supporting a Role in Reading, Speech and Language

    Full text link

    Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss

    Get PDF
    Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing
    • 

    corecore