Fostering Program Comprehension in Novice Programmers -
Learning Activities and Learning Trajectories

Cruz Izu”
The University of Adelaide
Adelaide, Australia
cruz.izu@adelaide.edu.au

Quintin Cutts
University of Glasgow
Glasgow, UK
quintin.cutts@glasgow.ac.uk

Birte Heinemann

Paderborn University

Paderborn, Germany
birte.heinemann@uni-paderborn.de

Claudio Mirolo
University of Udine
Udine, Italy
claudio.mirolo@uniud.it

ABSTRACT

This working group asserts that Program Comprehension (Prog-
Comp) plays a critical part in the process of writing programs. For
example, this paper is written from a basic draft that was edited
and revised until it clearly presented our idea. Similarly, a program
is written in an incremental manner, with each step tested, de-
bugged and extended until the program achieves its goal. Novice
programmers should develop program comprehension skills as they
learn to code so that they are able both to read and reason about
code created by others, and to reflect on their own code when writ-
ing, debugging or extending it. To foster such competencies our
group identified two main goals: (g1) to collect and define learning
activities that explicitly address key components of program com-
prehension and (g2) to define possible learning trajectories that will
guide teachers as they select and sequence those learning activities
in their CS0/CS1/CS2 or K-12 courses.

Both goals were achieved as described in this report: after a
thorough literature review, a detailed description of the Block Model
is provided, as this model has been used with a dual purpose (p1)
to classify and present a comprehensive list of ProgComp tasks
and (p2) to define a possible learning trajectory for a complex task,
covering different cells of the Block Model matrix. The latter will
help instructors to decompose complex tasks and identify which
aspects of ProgComp are being fostered.

*Leads

Pre-print of the paper (accepted manuscript) for the institutional repository and not
for redistribution. See terms of the ACM Copyright Transfer Agreement.

ITiCSE 19, July 15-17, 2019, Aberdeen , UK — Published article:
https://doi.org/10.1145/3344429.3372501

Carsten Schulte”
Paderborn University
Paderborn, Germany

carsten.schulte@uni-paderborn.de

Rodrigo Duran

Aalto University

Helsinki, Finland
rodrigo.duran@aalto.fi

Eileen Kraemer
Clemson University
Clemson, SC, USA
etkraem@clemson.edu

Ashish Aggarwal
University of Florida
Florida, USA
ashishjuit@ufl.edu

Mirela Gutica
British Columbia Institute of
Technology
Burnaby, Canada
mirela_gutica@bcit.ca

Violetta Lonati
University of Milan
Milan, Italy
lonati@di.unimi.it

Renske Weeda
Radboud University
Nijmegen, Netherlands
renske.smetsers@science.ru.nl

KEYWORDS

program comprehension; learning trajectories; CS1; novice pro-
grammers; K-12 computing

ACM Reference Format:

Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio
Mirolo, and Renske Weeda. 2019. Fostering Program Comprehension in
Novice Programmers - Learning Activities and Learning Trajectories . In
ITiCSE ’19: The 24th ACM Annual Conference on Innovation and Technology
in Computing Science Education, July 15-17, 2019, Aberdeen , UK. ACM, New
York, NY, USA, 24 pages. https://doi.org/10.1145/3344429.3372501

1 INTRODUCTION

“... The aim of life is not to change the world but to
understand it

Youth with Split Apple, Kenny Hunter, 2005!

The quote above highlights the split between changing/creating
and understanding. This same split is also seen in debates about
teaching and learning programming, e.g. [27, 81]. Learning to pro-
gram is not only about mastering the syntax and semantics of each
construct of a programming language. From the outset, Soloway
identified two key issues on learning to program [97]: the ability to
identify a plan, a stereotypical solution to a programming problem,
and an understanding of how “the computer turns a static program
written on a piece of paper into a dynamic entity that exists over
time”, in which the causal relationships between statements are im-
portant for understanding and describing how the program works.
The behavior of the machine is often too complex for students to

nscription on a sculpture in front of the Working Group building in Aberdeen.

https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1145/3344429.3372501

comprehend, beginners in particular. Instead, instructors present a
pedagogically designed simplification of the machine behavior to
students, a model described as the Notional Machine [27].

Multiple models have been proposed to analyze program com-
prehension in terms of types of information implied [73], mental
representations [115], cognitive demand [30], or as a hypothesis-
driven process [109]. The 2010 ITiCSE Working Group report [91]
compared and contrasted how those models conceptualize program
comprehension. Although this comparison was the main focus of
the report, it also provided some insights into learning concepts
and obstacles, effective learning tasks and teaching methods. Thus,
this Working Group continues to explore and support the teach-
ing insights given in [91] by collecting and categorizing suitable
learning tasks for Program Comprehension (ProgComp for short).

The focus on how different tasks develop the thinking process
of learners and how tasks should be ordered to support effective
learning progressions is what distinguishes our Working Group
(WG) from other approaches that have collected useful examples
and tasks, e.g. [12, 58, 87]. In other words, we have focused not on
how to assess program comprehension, but on how to foster it.

In order to achieve these goals, we followed a five step plan:

Step 1 — Review the current state of research and development
by analyzing literature on proposed activities addressing
ProgComp.

Step 2 — Concurrently, interview instructors at various institutions
on their classroom activities to foster ProgComp.

Step 3 — Use the outputs from the literature review and instructors’
interviews to define and conceptualize what is meant by
ProgComp in the context of novice programmers.

Step 4 — Catalog learning activities with regard to their prerequi-
sites, intended learning outcomes and additional special
characteristics.

Step 5 — Develop a map of learning activities and thereby also
models of probable learning trajectories.

Regarding step 2, we wanted to learn from educators which el-
ements and kinds of mental representation they seek to convey
when teaching introductory programming classes. We also asked
them to report any abstract or concrete (e.g., code) examples/ac-
tivities/exercises they use for teaching these representations and
what challenges students usually encounter when comprehending
programs. Therefore, we are building on what Lobato and Walters
have named the hypothetical learning trajectory, the trajectory as
seen through the eyes of the instructor [55, p. 84]:

The starting point in teacher planning is the creation
of conjectures regarding what students understand
initially and what they may be able to learn next. In-
structional tasks are selected, not only on the basis of
generic task features, such as high cognitive demand
or student interest, but also because of an inferred
quality of being able to engender the next level of
sophistication of student thinking.

As we implemented the plan, it became clear that a framework
for classification was needed in step 4. The WG found out such a
framework was also useful to analyze an individual task concerning
its prerequisites and thereby allowing to design learning trajectories
that can be customised to adapt to learners’ prior knowledge.

The rest of the report is organised as follows. In the first part
of this paper, sections 2 and 3, we revisit previous works related
to ProgComp and its theoretical foundations. Section 2 provides a
definition of comprehension that ties concrete activities fostering
ProgComp to the goals we expect students to achieve. It also situates
comprehension as part of programming knowledge, and describes
how program comprehension is assessed and taught. Section 3
presents the Block Model [90], which is our chosen framework to
reason about ProgComp. We also describe tasks to foster ProgComp
found in prior work, using the Block Model to analyse and classify
those sample tasks.

The second part of this paper has 3 sections, each investigating
and reporting work done by the WG covering different aspects
of ProgComp. In section 4 we present perspectives on program
comprehension from our practitioners’ points of view. In section 5
we provide an extensive list of ProgComp tasks, classified according
to the dimensions of the Block Model. In section 6 we discuss how
the Block Model can be used to support the design of a learning
trajectory of instructional materials that promote ProgComp. For
each investigation taken, the methodology is described at the start
of its section. Finally, in section 7 we present our conclusions and
discuss opportunities for future work.

2 BACKGROUND AND RELATED WORK

This section provides our definition of program comprehension
inspired by the findings of the literature review. We have grouped
them into four broad categories: the characterization of program-
ming knowledge, the identification of some useful coding abstrac-
tions, the assessment of novices’ understanding of programs, and
the learning of code reading skills.

2.1 Program Comprehension Overview

Up to now, as a matter of fact, teaching to program has mostly been
approached as a “code writing” activity, the main goal being to
develop programs. By contrast, “code reading” is sparingly taught
explicitly, although instructors need to provide guidelines for inter-
preting code when presenting new language constructs or problem
solutions to their students. Program comprehension’s focus is pre-
cisely on this latter type of approach. Let’s start by providing our
WG definition of two terms:

Program Comprehension (ProgComp) — it is usually con-
ceptualized as a process in which an individual constructs
his or her own mental model of a program.

ProgComp task - in such task the learner encounters an arti-
fact that represents the program. The task asks the learner
to engage with the artifact in some way. Through this inter-
action with the artifact, the learner is stimulated to elaborate
on and refine their mental model.

The artifact is typically source code, but might also be another
form of specification such as the nodes in a Parsons problems [72]
or a collection of blocks in a blocks-based programming language
such as Scratch [59].

The model is expected to include features such as the elements
and structure of the program (starting from the basic coding con-
structs), the execution behavior, and the purpose of the program
and its blocks, both from the programmer’s perspective and in the

domain context. In the process, the learner is required to also re-
trieve and put into action their prior knowledge about programming
and/or the problem domain, and possibly consider other sources of
knowledge, e.g. the programming language documentation or a ver-
bal explanation of the program’s purpose. As the learner interacts
with the program, she may choose to create external representa-
tions such as notes, traces, sketches or diagrams to help overcome
the limitations of working memory [20, 117] and further support
the development of the mental model and the accomplishment of
the program comprehension task.

Although what pertains to ProgComp is the ability to read, in-
terpret and explain code, we can identify a range of code editing
activities that combine reading and writing, such as debugging,
refactoring, or extending the functionality of existing code. All of
these are concrete programming tasks with a clear code compre-
hension phase that informs the changes of code written. Without
comprehension, it is nearly impossible to debug or extend code by
trial and error. An advantage of this type of tasks is that, by their
applied nature, they are more motivating to students and can help
them realize how important is comprehension for the customary
writing and editing processes. Thus, we will consider ProgComp
tasks in this wider context, with focus on the comprehension facet
— be it the final goal or an explicit subgoal of the task at hand.

Typical ProgComp tasks exist along a continuum of engagement
from explaining tasks to annotation tasks to modification tasks, all
forms of active learning [36]. In explaining or articulating tasks
the learner reads the code and then explains to themselves or a
partner what they think the code (or parts of the code) is doing.
In annotation tasks, students might be asked to add comments or
highlights or to create secondary external representations such
as trace tables or sketches. Modification tasks, on the other hand,
are about adjusting or reworking the original code to, for example,
correct a bug, make the program more readable or add a feature.

2.2 Characterisation of Programming
Knowledge

A number of seminal theoretical works have attempted to categorise
the programming knowledge implied in ProgComp, in particular:

e Linn’s chain of cognitive accomplishments to learn program-
ming [50]; besides code writing and problem solving skills,
it covers the precursor stages that concern the learning of
language features and the development of a repertoire of
templates, i.e. “stereotypic patterns of code using more than
a single language feature [...] employed as an entity in pro-
grams to perform commonly encountered tasks”.

o Rogalski & Samurcay’s general framework for knowledge
representation in the programming field [82], where the dif-
ficulties faced by novices are subdivided into four areas: con-
ceptual representations about the computer device, control
structures that disrupt the linearity of program text, vari-
ables, data structures and data representation, and program-
ming methods, i.e. aids for identifying suitable strategies to
solve problems of a given class.

e McGill & Volet’s conceptual framework for analyzing stu-
dents’ knowledge of programming [63], which “integrates
three distinct types of programming knowledge identified

in the Computing Education literature (syntactic, concep-
tual, and strategic) with three distinct forms of knowledge
proposed in the cognitive psychology literature (declarative,
procedural, and conditional)”. The resulting knowledge cate-
gories are: (i) declarative-syntactic, representing knowledge
of syntactic facts for a specific programming language; (ii)
declarative-conceptual, relative to the understanding of the
notional machine; (iii) procedural-syntactic, referring to the
ability to produce syntactically correct code; (iv) procedural-
conceptual, concerning the ability to write programs. (v)
strategic/conditional (“conditional” stands for knowing when,
in which conditions to use a given strategy), addressing the
ability to design, code, and test a program that solves a novel
problem.

More recently, following a similar line of research, Xie et al. [116]
drew on prior work to address distinct programming skills that,
according to the authors, “prior theories do not translate to con-
crete instruction that supports” their development in novices. Their
theoretical framework distinguishes among four subsequent learn-
ing steps focused on: (i) knowledge of the operational semantics,
demonstrated by being able to trace code; (ii) knowledge of the
syntactic structures demonstrated via translation of accurate de-
scription in a natural language into syntax that “compile and exe-
cute as expected”; (iii) learning of reusable abstractions, or program
“templates”, demonstrated by the ability to identify the components
of such abstractions as well as their purpose in a given program;
(iv) problem-solving skills, demonstrated by being able to apply
and/or combine program templates to solve the problem at hand.

2.3 Use of Abstraction in Program
Comprehension

When expert programmers read code, they use abstraction or chunk-
ing to identify key components. In this section we will summarise a
range of studies covering two significant abstractions in this respect:
plans and variable roles.

Soloway uses the term plan to describe ‘chunks’ of knowledge
incorporated in a ‘canned’-solution [97]. He related the role of plans
in reading computer programs to what cognitive psychologists refer
to as schemata as units of mental organization. Robins et al. [81]
explicitly link “structured chunk of related knowledge” to schema
and plan. Rist [80] describes a plan as “the basic cognitive chunk
used in program design and understanding”. Brook’s work [6, 7]
showed that students who are able to recognize ‘beacons’ which
identify plans, can reason about programs at a higher level.

De Raadt describes a set of elementary plans (programming
strategies) that can be combined into a programming solution [22].
Examples of elementary plans are Initialization (variables), Aver-
age, Triangular Swap, Counter-Controlled Loop, Sum, and Count
plans. He explains that the identification, selection, and application
of plans can be seen as a representation for strategy (similarly de-
scribed in [101], also known as patterns [110]) and should be taught
and assessed explicitly [116]. Plans can be abutted (or concatenated),
nested and merged — thereby their mastery is a high-level learning
outcome. Similarly, plans can be decomposed into smaller units, or
sub-plans, and used to distinguish pre-requisites.

Just as algorithmic thinking skills are needed to link plans to-
gether to create an adequate solution, programmers need to be
able to identify and analyze plans and their parts to comprehend
programs as a whole. Experts are good at recognizing, using and
adapting plans, and as a result are faster, more accurate and employ
effective strategies [81].

Spohrer and Soloway [100] analyzed difficulties related to plan-
composition problems, and argue that these have a larger impact on
programming success than language construct knowledge. Soloway’s
work [97] identified the need to teach plans as abstractions. Rist
[79] explored this approach and found that when students know
an appropriate high-level schema for solving a problem, they can
reason adequately from plan to code.

More recent work by De Raadt et al. [23] has shown that explicitly
teaching plans improves the learning outcomes. However, Rist also
emphasizes that novice programmers are often unable to translate
high-level plans into concrete program statements.

Even when students master those plans independently, construct-
ing a working program where those plans need to be composed is
not a trivial task. Fisler et al. [35] uses the Rainfall Problem as a
benchmark to show that certain paradigms (e.g. functional), lan-
guages or methods of instruction could make this composition
process more efficient. For readers not familiar with plans, refer to
appendix A which presents an example of plan composition.

Although much work, especially on the ability to combine plans,
focuses on program construction, we can think of it as providing
lenses to make sense of a program’s structure, in accordance with
our ProgComp perspective. Learning about (combining) plans could
be facilitated by focusing on program comprehension rather than
composition. As such, novices could be required to recognise how
these strategies are applied to create solutions to solve more com-
plex tasks. In fact, Merriénboer [64] explored such an approach in
a high school context with promising results.

Variables and the operations on them can be seen as beacons to
identify a particular design pattern (see also [1, 31, 68]), or being
used directly as having significant roles [11, 47] that help to abstract
from the code to its goal. Only ten roles are needed to cover 99% of
all variables at novice level. For example, a Sum plan can be seen
as a program with a stepper variable (the control variable of the for
loop) and a gatherer variable to accumulate the sum.

Sajaniemi et al [84] compared the impact emphasizing variable
roles while teaching has on ProgComp relative to a group taught
the traditional way. Both groups showed similar performance on a
program prediction task and a program construction task, but the
students that were regularly exposed to variable roles outperformed
the others in the program comprehension task that asked them to
describe the purpose of the program and how it worked.

In summary, recognizing beacons or variable roles, identifying
plans, and understanding how they are used and combined are all
an important part of program comprehension.

2.4 Assessment of Program Comprehension
Starting from pioneering studies by Mayer, Soloway, Spohrer, du
Boulay and others [27, 60, 97, 98, 101] since the early 80s, much
research work has been focused on the assessment of different
aspects of novices’ program comprehension.

Since then, several educators appear to agree about novices’ dif-
ficulties to thinking at a “relational” level [54, 95]. In this respect,
the ability to summarise the purpose of a program in a sentence
(to “explain in plain English”) has been investigated by Lister et al.
[54], and later linked to the ability to write code [69]. Furthermore,
the structure and goal of a program may have a significant impact
on how students understand it. Duran et al. [30], in particular, in-
vestigated how different program structures and plan-composition
strategies could lead to students’ distinct perceptions of difficulty.
Comprehending what makes a program complex and how it could
be transformed or broken into smaller pieces to reduce complexity
is an important ability that instructional designers should put into
practice.

In general, novices’ understanding of programs has been ex-
plored from a variety of perspectives, such as: to investigate the
extent to which tracing, reading and writing skills correlate with
each other [56]; to interpret students’ ways of classifying code
fragments based on perceived similarities and differences [105]; to
categorise novices’ mental models of the notional machine under-
lying imperative [5] and recursive [86] computations; to compare
students’ mastery of recursion vs. iteration [66]; to assess the un-
derstanding of conditionals, loops and nested loops [13, 42]; to
analyse the relations between students’ performance and their an-
notations in the exam papers [61]; to compare block versus textual
representations of programs [111].

2.5 Fostering Program Comprehension

Most of the contributions cited above suggest interesting tasks in
which students may engage. However, such tasks are usually meant
as tools the instructor could use to evaluate students’ achievements,
whereas hardly any insight is provided as to how to attain learning
progress in case of poor performance.

Early work by Deimel [25] provided relevant (but rarely cited)
guidelines on teaching program reading as follows:

Students should be encouraged to view programs at
different levels of abstraction and in different frames
of reference. We can show how a statement or group
of statements may be understood in terms of the ef-
fect on particular variables, in terms of a change in a
data structure, in terms of effecting part of an algo-
rithm, or in terms of the problem which the program
is supposed to solve. (To reinforce these ideas, we
should assign exercises in which the students must
interpret code at different levels ...) We must explain
that programs may be read top-down or bottom-up,
depending on one’s reading objective, the program
structure, and the nature of the comments.

However, only in the last ten years has there been a rising aware-
ness and focus on program comprehension as part of learning to
program. Researchers have proposed assessments that include or
target aspects of program comprehension such as reading [10], trac-
ing [70], explaining [69], or reversing changes to program state
[41, 103]. Recurrent practice with similar ProgComp tasks should
help with improved retention and transferability of the students’
newly elaborated mental models to future program comprehension
tasks [43].

More to the point, Sudol et al. [102] vindicated using code com-
prehension questions as learning events rather than as assessment
items. In a similar vein, Shargabi et al. [94] selected 14 program
comprehension tasks and surveyed practitioners to rank the tasks
in terms of perceived effectiveness in developing novices’ program
comprehension.

In addition, recent pedagogical approaches propose to design
courses addressing comprehension first:

e PRIMM (Predict-Run-Investigate-Modify-Make) [93], whose
aim is helping teachers to organise programming lessons
in which pairs of students are guided through reading and
adjusting code prior to writing own code. In fact, PRIMM
approach follows pattern not dissimilar to the one proposed
by Deimel [25], which has 4 phases: run and investigate, read
and trace, modify and extend, and finally write or make.

e PLTutor [70] models language execution and makes visible
the causal relationship between syntax and machine behav-
ior. Through observation of different aspect of program ex-
ecution students learned about the semantic of language
constructs and the notional machine prior to writing code.

e CS POGIL (Process Oriented Guided Inquiry Learning) [49],
where groups of students construct their understanding
about code through critical thinking questions that include
reading, analyzing, adjusting code, and finally reflecting on
what has been learned.

Note all three approaches are inquiry based, and exhibit many
similarities to POE (Predict, Observe, Explain) [114], a well-known
pedagogical approach to explore science topics at high school level.

Finally, it is worth observing that the tasks listed in later sections
could be used in a variety of courses, as formative assessment
in traditional courses, in active learning activities either using a
comprehension-first approach or combining/replacing writing tasks
with reading and editing tasks [64].

3 THE BLOCK MODEL

We complete the first part of the WG report by introducing the
Block Model and explaining with the use of examples its role in
analysing and classifying programming tasks.

The Block Model (BM) [90] is an educational framework that
supports the analysis of core aspects of program comprehension.
The merits of the Block Model have been attested by its application
in different studies. In particular, it has been used in [87] with
the aim of classifying tasks; moreover, in [112] the Block Model
categorization was compared to Bloom’s and SOLO taxonomy with
the result that it leads to a more accurate categorization.

Block Model looks at a program from two perspectives:

(1) One lenslooks at a program by considering different levels of
zooming in and out: from single expressions or instructions
to blocks, relations between blocks, and finally the whole
program.

(2) Another lens, taking an orthogonal standpoint reminiscent
of the SBF model [108], looks at a program as having three
dimensions as follows:

Text surface: the program code, a static entity;
Program execution: the program in execution, a dy-
namic entity;

Function/purpose: the program as an artefact with an
extrinsic purpose.

These different perspectives are organised into a 4 X 3 matrix,
where the rows represent a hierarchy of increasingly complex pro-
gramming structures, whereas the three columns correspond to
different dimensions of ProgComp — see Figure 1. Basically, stepping
within the matrix upwards, from simple to complex, and rightwards,
from surface to function, corresponds to achieving higher levels of
abstraction.

At the bottom row, we have atoms or basic elements of the
program, such as expressions or simple command lines. Next, we
have blocks, such as a sequence of related assignments, like when
swapping two variables, or a loop. Its upper level concerns the
relations between blocks, which are implied, for instance, when a
method is called with some arguments. Finally, the topmost macro-
structure level takes into consideration the overall program.

Note the concept of an atom is relative to the instruction received:
at the start every small element, an expression or a condition, is an
atom; as code fluency increases, a full statement or a simple pattern
(e.g. a swap) becomes an atom. This is why we need to situate the
task in the learning process to match it at the appropriate level of
comprehension. This will be done by indicating pre-requisites — so
that those pre-requisites characterise the atom level.

The levels of increasing structural complexity can be seen as
focusing on the sequence of steps in the comprehension process,
which is conceptualized as flexible, context bound, bottom-up, and
cyclic [90, 91]: textual information is perceived on a word-by-word
basis and immediately incorporated in the mental representation.
At the end of a block the capacity of the short-term-memory is
reached, information needs to be transferred and integrated in
working-memory so that short-term-memory is freed for the next
cycle. In this integration process only some information (not all)
of the former cycle is transferred, the mental representation is
step-wise abstracted from the perceived material. This process is
conceptualized as a hierarchic succession of mental representa-
tions, each hierarchy level being more abstract and independent
from the details of the perceived information. During the process,
the extracted information is connected or integrated with prior
knowledge to build a coherent whole.

The columns reflect the different dimensions of a program: the
leftmost column watches at the text surface of the program; the
middle considers the program when executed; the rightmost is about
the purpose or the intention of the program (and in some sense
of the programmer who wrote it). In the following we discuss
the programs’ features pertaining to these different dimensions,
and discuss them also in relation with programming knowledge
categories from the literature review.

3.1 Knowledge Dualities in the Block Model

In this section we will explore in some detail two dualities related
to programming knowledge and the Block Model.

Denotation versus Connotation. To begin with, we recall an impor-
tant distinction, known from natural language, between denota-
tion and connotation.

From the Block Model perspective, the text surface is the visible
representation of the program text. This includes detecting the

Macrostructure T (5

Relationships

Blocks (Chunks) or semantically build a unit.

Atoms Language elements.

Text Surface

Duality

Understanding the overall structure of the ~ Understanding the algorithm underlying a
program.

Relations & references between blocks (e.g. Sequence of method calls, object sequence
method calls, object creation, data access...). diagrams.

Regions of Interest (ROI) that syntactically ~ Operations of a block, a method, or a ROI
(chunk from a set of statements). subgoal.

Operation of a statement.

Program Execution

Architecture/Structure Dimensions

Understanding the goal/purpose of the program
(in the context at hand).

Understanding how subgoals are related to goals,
how function is achieved by subfunctions.

Understanding the function of a block, seen as a

Function of a statement: its purpose can only be
understood in a context.

Function/Purpose

Relevance/Intention Dimension

Figure 1: The Block Model Matrix.

beginning and the end of a given atom, and to discern the differences
to other possible atoms, as well as to identify what kind of atom it
is. For example, when reading the following code line:
i=1+1

the reader discerns that “i” is one element (used twice), “+” is an
operator, and “1” a literal. The attribution of “i is a variable” can be
seen as first understanding. It can be called denotation, in contrast
to connotation: denotation refers to the meaning of the element in
a context-free sense, like the meaning of a word as described in a
dictionary.

Connotation, in contrast, refers to discerning the meaning in the
concrete context of the use. With regard to the variable i this can
be to understand its role, e.g. as a “stepper” (see [85] for a list of
roles). Identifying roles of variables is precisely not an example of
task pertaining to the text surface dimension — in this dimension or
column, understanding (if one would choose the term) is restricted
to denotation.

ProgComp tasks in the Text dimension focus on the discernible
features of the representational formats. In order to understand the
text surface, some lexical and syntactical knowledge is required,
e.g. where to put semicolons, where and how to declare a variable,
and so on. Then, starting from identifying basic code elements at
the atom level (AT), learners can be guided to discern structural
information like the textual span of a block (BT), to recognise
meaningful features that link atoms and/or blocks to each other
(relational level — RT), and eventually to make sense of the macro-
structure (MT) of the whole program.

Moving to the second dimension, understanding Program exe-
cution (or simply line execution) is based on the notional machine
that introduces connotation as well. That is, execution usually de-
pends on the context set up by additional elements. Let’s refer to
the example code shown before: understanding its execution would
include working out the concrete value of variable i before and
after the increment.

This dimension also exposes a crucial difference between natural
and programming languages: while a natural language often leaves
free room for subjective interpretation, the semantics of a program
is univocal and is either correctly understood or not.?

2 A program text can possibly be “interpreted”, in some sense, to infer its operational
meaning, for example by looking for beacons as clues of plans, as described in section 2.3.
This is, however, a tentative interpretation, subject to verification.

The third dimension, Function (F), on the other hand, presup-
poses interpretation on a context extrinsic to the program itself.

Then, the related tasks require to link the program to some
external purpose. For example, if the value of the variable t is
interpreted as a temperature measure, the following expression:

1.8 x t + 32

can be meant as a conversion from Celsius to Fahrenheit degrees.

Programming versus Domain Knowledge. While the Block Model is
organised around three different types of knowledge involved in
ProgComp, another popular distinction is between program knowl-
edge versus domain knowledge [91]. Program knowledge is required
when extracting the appropriate information from the text surface
and inferring the related operational semantics. Domain knowledge
is used to make sense of the context, and thereby to understand the
goals of a program. In short, the purpose (function dimension) is
not an intrinsic property of a program but comes from an external
source. A similar trait is referred to in a variety of formulations
throughout different fields, as shown in Table 1.

Table 1: Different formulations of the structure vs. function
duality.

Structure/Architecture Function Reference
Text Prog. exec. | Purpose Schulte [90]
Structure | Behavior Function SFB-Theories [108]
Mechanism Explanation Soloway [97]
Tracing Reading Lister [56] etc.
Plans Goals Soloway [101]
Program Model Domain Model Pennington [73]
Text base Situation model | Kintsch [44]
Structure Function Kroes [46]
Proximate Ultimate Tinbergen [107]¢

“?Originally used in Biology, now adapted for machine behavior [75]

From an educational viewpoint, it is interesting to observe that
the three dimensions of the block model also correlate with cat-
egories characterising qualitatively different perceptions of the
programming activity [106] and of the learning of programming
[32], as attested by the outcome of empirical investigations of vari-
ation in novices’ perception of programming within the framework

of phenomenographic research. The two cited studies, in particular,
set forth a hierarchy of five categories in connection with (1) the
textual representation of a program, (2) the action of a program, (3)
the application addressed and (4) the problem solved by a program,
(5) the contexts in which programming can be a valuable resource.
From this perspective, the text, program and function dimensions
can be seen as describing a hierarchy of knowledge and skills, where
each subsequent stage presumes mastery of the concepts implied
by the previous ones.

As a further related example, Bruce et al. [8] had also identi-
fied five categories, from which text, program and purpose emerge
as distinct traits. More specifically, at the lowest level, students’
“primary intent is to keep up with set assighments” to get enough
marks. At the next level, learning to program is mostly seen as
learning the syntax of the programming language (Text dimension).
In the third category, the focus is on “the structure and logic of
the language — in essence, how the language works” (Program
dimension). Then, the programming language is not seen as an end
in itself, but as a means to solve problems and achieve tasks (Func-
tion dimension). Finally, in the last category, programming is also
experienced as a “culture”, as “participating” in the programmers’
community.

3.2 Using the Block Model to analyse
programming tasks

The Block Model was designed to help educators in reasoning about
the cognitive implications of program reading and comprehension,
as well as in planning how to teach ProgComp. The Block Model’s
perspective seems apt to support what emerges from the experience
of practitioners, i.e. the fact that program comprehension requires
a variety of pieces of knowledge and skills to be mastered.

Indeed, in order to actually come to a full understanding of the
program under consideration, one needs to understand all its differ-
ent dimensions, at all different levels of complexity, as articulated by
the Block Model. Consequently, several different kinds of activities
are needed to foster ProgComp, each focusing on a different facet
or endeavour.

Typical ProgComp activities ask the learner to explain what a
piece of code does, annotate or comment the code, represent its
execution with sketches or trace tables. Other tasks, such as Par-
sons problems [72] or debugging problems, are more connected to
writing programs but still rely heavily on program comprehension.

Depending on the size and features of the piece of code under
analysis, a certain kind of activity may help in achieving different
learning goals, since it may activate and/or require different cogni-
tive processes. For example, when asking to explain on one’s own
word what a piece of code does, one might aim at different kinds of
answer. Often the task pertains to the comprehension of the code
purpose or goal (Function dimension), as in the approach of Lister
et al. [51]. However, the same type of task may focus instead on
the mechanics of a counting loop (Program execution dimension),
or even on the syntax of an assignment statement (Text surface
dimension).

Analysing ProgComp activities within the the Block Model frame-
work supports the identification of the learning goals and the pre-
requisites associated with the task, and may help teachers in under-
standing when and how to propose such different tasks in learning
and assessment.

In the remaining of this section we will describe some represen-
tative ProgComp activities, namely tracing tasks, “explain in your
own word” tasks, and Parsons problems, and analyse them by using
the Block Model. We used the same method to analyse a number
of ProgComp tasks we collected, which resulted in a classification
that will be presented in Section 5. Furthermore, in section 6 we
will show how ProgComp learning trajectories can be designed, by
devising different learning activities that target particular cells in
the block model such as AP or BF.

3.2.1 Tracing Tasks. Tracing is defined as following the execution
of a program, atom by atom and line by line, in a sequential manner.
Each tracing task is aimed at covering or assessing one particular
aspect of the notional machine. While tracing, we follow the state
of the variables after each line is executed, possibly using a tracing
table. Hazzan’s Guide to teaching Computer Science [38] describes
the following variations for tracing:

“A tracing question can ask to follow (a) a complete program; (b)
a single method; (c) a recursive method; (d) object creation. In
addition, the following instructions can be used in each of the
above variations: (1) follow the code execution according to a given
input; (2) follow the code execution when learners choose the input;
(3) follow the code execution according to several different specified
inputs which are selected in a way that guides the learners to find
what the given code performs; (4) find different sets of inputs so that
each set represents a different flow by which the code is executed,;
(5) find a set of inputs that yields a specific output.”

Figure 2 shows a range of tasks proposed in the literature as
‘tracing tasks’. The first example focuses on assignment, while the
other two tasks address loop iteration. Notice that, in fact, these
exercises do not explicitly ask to trace code, but to write either the
values of variables at the end of execution (first example) or the
computed output (final value of count in the second example, or
full trace of loop control variables “i” and “j” in the third example).
Tracing is indeed the assumed strategy to obtain such values or
output.

Also note that the second tracing task [87] is not given a starting
value of N, instead the premise to the question says “assume that
N is a positive integer”, while providing 5 possible choices (N, N/2,
N/2+1, (N+1)/2, or 9). In line with Hazzan’s guide, we could ask
other tracing questions at different levels, such as

Q1 - If N has value 15, what is the output of the program?

Q2 - What would be the value of count when N value is 10? And
when is 13?

Q3 - For which values of N will the program print 0?

In terms of the Block Model, the core of tracing activity is to
follow the execution of atoms; therefore tracing focuses on cell
AP. Understanding the execution of the current atom then includes
understanding which atom is the next one to be executed. That is,
there is no need to abstract from this perspective to some more
general understanding of the relations of parts of the program —

ables .
vl = 10;
v2 = 15;
v3 = vl;
vl = v2;
v2 = Vv3;

T1: What do the variables v1, v2 and v3 hold after the following
Python code is executed? Assume that they are all integer type vari-

T2: What is the output of the
following code segment?

int count=0;
for (int i=0; i<N; i++) {
if (1% 2==20){
count++;

3

System.out.println(count);

T3: What is the output of the
following code segment?

int i, j;
for (i = 1; i<=5; i++) {
for (j =1; j<=5; j++) {
printf("%3d", i*xj);
1}
printf("\n");

Figure 2: Three tracing tasks from the literature: T1 - trace
swap [19], T2 - Count evens in range [87] and T3 - trace nested
loops [13]

one atom simply denotes which atom is the next in the program
flow. In summary, tracing can work at atom level only.

When the code to trace involves methods or functions calls,
however, it is necessary to establish connections between states
relative to both the caller code and the called procedural unit. Thus,
in this case, tracing occurs at the Relational level (RP).

In a learning trajectory tracing seems to be a basic skill. Even
when tracing is at the Atom level, the comprehension process need
not be restricted to that level; the Block Model asserts then while
tracing, the comprehension process will not stop, but some chunk-
ing or abstraction (going up the levels) will occur. So a higher
understanding than at the atom level may also occur.

As Deimel explained [25] “students should not be discouraged
from tracing code in order to understand it, but they should be
made to realize that doing so is a means to an end, a source of data
for the real task of interpretation”

Teague et al. [104] describe the development of ‘abstract tracing’
as reading the code without relying on concrete values — instead
the reader can think about a set or a class of values and how those
lead to specific traces (as in Example T2 above). This kind of abstract
tracing doesn’t have to be complete to allow inferences. Lister and
Teague refer to inferring the ‘purpose’ of the code — but probably
it is more inferring the algorithmic idea, hence MP (or perhaps BP)
in the block model notation.

In summary, in later learning stages a student may not trace the
code but, based on plan knowledge, get a quicker understanding
of the code (probably at BP level). Likewise, students could take
shortcuts in tracing, discussed as ‘beacon’ in [7]: by detecting some
familiar elements a student might be tempted to infer from that
beacon the overall plan of the lines of code to be traced, so that,
instead of tracing, the value of the elements are inferred based on
this intuitive understanding of the assumed goals or plans of the
program. For example, a reader may anticipate that the first task in
Figure 2 includes a swap, or that the second task is counting the

public void method1@B(int iNum)

{
for(int iX = @; iX < iNum; iX++)
{
for(int iY = @; iY < iNum; iY++)
{
System.out.print("x");
3
System.out.println();
3
}

Figure 3: Example of "Explaining in your own words" task
[56]

even numbers in the range. However, when the individual atoms
are perceived as an integrated whole — e.g. task T2 as a “counter
control” loop-plan [22] — it is possible that some of the details of the
atom level get lost. For instance, the reader may not check whether
the loop begins with @ or 1.

From a different perspective, tracing may also help to develop
— besides construct knowledge (AT and AP) — also more general
type of knowledge that is later needed to build a more abstract
understanding of the program execution; that is knowledge about
the notional machine. An example of this is reported by Nelson
et al. [70] using a self-contained online course. Similarly, according
to a study by Hertz and Jump [40], program memory tracing seems
to be working in this proposed way.

In conclusion, the core learning effect of tracing is to address
knowledge and skills pertaining to the AT and AP cells of the
Block Model, even though this kind of activity can set the ground
for knowledge at level of higher abstraction. As far as possible,
novices tend however to avoid carrying out an accurate step-wise
tracing process, and rather try — more or less successfully — to get
a somehow abstract grasp of algorithmic patterns to comprehend
BP, RP and eventually MP. Being able to develop viable and sound
abstractions of program execution is of course required in order
for the learner to progress in ProgComp. So, teachers and learners
must be aware of the role, scope and aims of concrete tracing tasks.

3.2.2 “Explain in Your Own Words” Tasks. This type of task requires
to explain in natural language the execution (Program dimension)
and/or the function/purpose (Function dimension) of a program.
Typical examples mostly focus on commenting on the Block level
and the Macro level, because comments stick to the block they are
commenting on, or to the program as a whole.

Lister and colleagues refers to questions at the MF level as read-
ing questions: Describe the purpose of the program text in your
own words , [54]. Figure 3 shows one of the code fragments used
in [56]. They are also called “Explain in Plain English” questions
[18, 69], although we prefer to called them “Explain in your own
words” so that it applies to non-english speakers as well.

One interesting observation is that students often have difficul-
ties to explain the purpose (MF), and although asked to describe the
code goal, they explain the execution of the program (P dimension)
instead, and this often step by step (AP).

While authors differ whether the ability to explain the behavior
(tracing) necessarily precedes the ability to explain the purpose

Parsons Problem Target code
if(1[i1>b){ int[] 1={20,24,23,35,30,35};
int b=1[0]; int b=1[0];
} for(int i=1;i<l.length;i++){
b=1[i1; if(1Lil>b){
int[] 1=(20,24,23,35,30,35}; b=1[1i];
for(int i=1;i<l.length;i++){ }
} }

Figure 4: Example (left) of a Parsons Problem code given for
the goal “this program finds the largest value in the array”,
and (right) its expected solution.

[18, 54, 56], these empirical studies support the rationale of the
BM dimensions, or Pennington’s idea of program models (program
model vs. domain model), that program execution is qualitatively
different from its function or purpose.

From the BM perspective difficulties in discerning MF for stu-
dents focusing on AP is not surprising - there are many compre-
hension steps in between.

To make it easier one can structure the task and provide scaffolds.
E.g. so that first students explain the function of blocks (BF) —
helping them to derive MF. It should also be helpful to provide
explaining tasks at the RF level: Requiring learners to figure out the
goal based on given subgoals. We are not sure if there are specific
examples of “explain in your own words” tasks relative to RF, or if
this has been overlooked in practical examples.

Two more observations on these types of task. First, from an ex-
perience point of view, it is sometimes hard to distinguish between
explaining/describing the operation (program execution dimen-
sion) and explaining/ describing the function (function/intention
dimension), unless the two features differ greatly. Maybe here is
the crucial task to watch out for when using this learning activity
in the classroom. Second, complexity of the task can vary greatly
based on the cognitive complexity of the program, defined by the
number of blocks and the relations between them.

3.2.3 Parsons Problems. In a Parsons problem, the correct code to
solve a particular problem is provided, but the code is broken into
code blocks (in general lines of code) and mixed up. The task is
to rearrange the blocks into the correct order for the code to run
successfully thus achieving a given goal. An example of a Parsons
problem (also called a Parsons Puzzle) is shown in figure 4.
Parsons problems allow to work on complex code, such as the
loop control in figure 4, with a lower cognitive load. For instance
the solver can neglect the syntactic aspects and focus only on
reconstructing the order of code fragments so that the resulting
program implements the plan required to achieve the given goal.
The standard version can be extended by either (1) including
distractors where irrelevant lines are added to and mixed with all
useful lines of code, or (2) providing choice using paired options
where a selection between two highlighted lines of code needs to be
made, or (3) removing the indentation obtaining two-dimensional
Parsons puzzles (in the standard version, lines appear with the in-
dentation that they should have when in place in the final solution).

Such variations can be used to focus assessment specifically on
misconceptions or areas that learners typically struggle with.

Ericson at al. [34] found that solving two-dimensional Parsons
problems with distractors took significantly less time than fixing
code with errors or than writing the equivalent code, whilst being
just as effective. Another clear advantage is that marking is fast
and objective. Denny et al [26] noted a direct correlation between
Parsons-problem and code writing scores. Overall, Parsons Prob-
lems are somewhere between reading and writing tasks [26, 34].

In terms of the BM, in Parsons problems the Function (or purpose,
or goal) of the target code is given in the task description. The text
surface, at least in the standard version, is complete, in that all
elements (lines of code) are there. However, they are in a shuffled
order, so that it is not possible to infer by the features of the text
structure which elements form a block and how these are related to
enable the desired program execution. Reading and thinking about
these elements require to discern atoms (AT) and, from hints in the
text surface — e.g. code comments, meaningful names of methods
and variables — or in the task description, to get an understanding
of their role in the program (MF understanding). This can be done
by proceeding top-down (from MF downwards), bottom-up (from
AF upwards), or with a mixed approach.

Non-standard Parsons problems’ difficulty is easily adapted [34]
hence, from the Block Model perspective, they have a very high
variation in complexity, and focus.

4 TEACHERS’ VIEWS OF PROGRAM
COMPREHENSION

4.1 Methodology

Study Design. As we intended to capture the current practices
and perceptions of ProgComp, we employed first an exploratory
stage in which we conducted structured interviews on the topic
with teachers involved in secondary and/or post-secondary/tertiary
education. During the second stage of our study we (a) collected
and organized program comprehension tasks and classified them
using the BM and (b) defined possible learning trajectories that can
guide teachers as they select and sequence those learning activities
in their CS0/CS1/CS2 or K-12 courses. Our approach is in-line
with the didactic transposition theory of transforming academic
knowledge with the purpose of contextualization in an educational
context: didactic transposition refers to the transformations an
object or a body of knowledge undergoes from the moment it is
produced, put into use, selected, and designed to be taught until
it is actually taught in a given educational institution. And these
transformation “presuppose the decontextualisation of academic
knowledge from the conditions within which it was created and its
recontextualisation according to the terms and restrictions imposed
by the educational context”, Chevallard and Bosch [14].

The instrument. In order to collect comparable data, before car-
rying out the interviews the working group members debated the
questions to ask and the format: survey or interviews. Our goal was
to elicit aspects of the instructors’ pedagogical content knowledge
(PCK) about program comprehension. Shulman’s PCK [96] is meant
to integrate teacher’s knowledge of the subject being taught as well
as of how to teach it in concrete situations. It is then grounded in

the beliefs and practices of the teacher and covers conceptual and
procedural knowledge, of a repertoire of activities, techniques and
resources, of how to evaluate the learning outcomes.

Teachers’ PCK is usually characterized precisely through inter-
views and, in this respect, the CoRes provide a suitable model to ask
about important ideas/concepts (“Big Ideas”) [57]. Examples of ap-
plication of the CoRe protocol to characterise teachers’ PCK about
introductory programming topics can be found, e.g., in [3, 9, 83].

However, due to time constrains and ethic approvals we post-
poned using in-depth interviews and eventually agreed on a proto-
col for a short structured interview (see appendix B) which could
be collected prior to our conference’s meeting.

Data collection. We interviewed 31 instructors (22 M/9 F) from
institutions in 10 countries (Canada, Finland, Germany, Italy, Peru,
Spain, The Netherlands, Turkey, UK and USA). The interviewees
are secondary school (8) or university teachers (19), some having
taught at different instruction levels (4), including primary school. 8
interviewees have been teaching for 20 years or more, 12 between 10
and 19 years, 7 at least for 5 years. Most of them have a background
in CS; the others either in Mathematics or in Engineering fields. A
large part of their students are learning CS or computing-related
subjects. The interviews were conducted in person or by e-mail by
the authors of this paper and consisted of four main questions and
several sub-questions (see appendix B).

Interview coding and analysis. We used a team-coding method
with several researchers participating in interview coding and anal-
ysis. The interview data is very rich; however, we focused on this
study on three main themes: (1) definition of ProgComp, (2) what
concepts and skills are the most important for students’ learn-
ing, and (3) which teaching aspects described by our participants
matched cells of the BM as presented in Figure 1.

Our approach to coding the first two main themes was induc-
tive: based on the interview data, one of the authors of this paper
proceeded with an initial coding and proposed the codes presented
in Table 2 and Table 3. In the analysis of the activities reported by
teachers we tried to understand the activities in the context of the
Block Model theory, therefore our approach was deductive as we
were using the Block Model categories and definitions.

Five authors participated in a second stage of coding. Each in-
terview was coded by two researchers: one initial coder coded an
interview and the second coder read the coding done by the first one
and indicated in a rubric all aspects of agreement and disagreement.
After that, the two coders discussed and exchanged messages until
they agreed on the final coding. We assured the coding validity
as all coders were familiar with this research, followed the same
coding protocol and understood the meaning of codes in the same
way.

Next, we will present out results.

4.2 Teachers’ views of Program Comprehension

It is interesting to capture and explore the views and motivations of
practitioners in regards to ProgComp. In this section we will provide
a summary of the answers to the interview question “Explain in a
few words what the term ‘program comprehension’ means to you”.

Table 2: Practitioner’s views of Program Comprehension

ProgComp description Frequency
ProgComp as code reading ability 23
ProgComp as mental model of the NM
ProgCom as writing code

ProgComp as knowledge of prog. constructs
Other views of ProgComp

N o o

With the exception of one interviewee (‘T don’t think I explicitly
teach program comprehension, but rather writing code”), most teach-
ers are aware of one or multiple aspects of ProgComp as shown in
Table 2. The range of coverage varied: 19 teachers (60%) provided
only one view, while 4 (13%) of them gave very comprehensive
definitions that included three categories. Next, we will provide
detailed examples on each category, except the last one which is a
mixed bag: two teachers were very generic and hard to be classified,
e.g., “Be able to have a whole view of the program”, while another
pair talked about the goal of writing code to solve problems.

ProgComp as code reading ability. Most teachers think of Prog-
Comp as being able to read and explain (possibly to themselves
or to others) code. Here are a few examples that elaborate on this
theme:

ProgComp is a skill that allows a student to read a mean-
ingful segment of code and find out what is designed to
do.
or:
ProgComp means to grasp a program’s purpose and to
be able to explain the underlying algorithm accurately.
This reading skill implies the ability to predict the outcome of
executing the code:
Understanding code written by others; being able to
predict the outcome of such code.
but one teacher points out that such understanding is deeper than
simply being able to trace code:

It is different from tracing: tracing focuses only on the
operational aspects (how the notional machine works).

ProgComp as mental model of the notional machine. From
another perspective, ProgComp is meant as developing a mental
model of the notional machine, of “what is happening beneath the
hood™

ProgComp is how the students understand programs by
developing mental models of how computers work.

or more precisely:
Developing a precise mental representation of the inter-
nal state of the program (variables, activation records
and stack...) and how this state evolves.

ProgComp as writing/developing code. Some teachers express
the need to understand code in order to either write or modify code,
eg.:

ProgComp means being able to read and understand a

program well enough that I can make subtle changes to

the code and students will be able to describe the effects.

Some teachers discuss the pragmatics of code developing such
as editing, compiling, debugging, working in team and so on:
For me, ProgComp refers to the methods that developers
use to maintain existing source code.

ProgComp as understanding basic constructs. Finally, four
interviewees provide definitions involving the understanding of
the basic imperative constructs:

At the introductory level, I think it means understanding
the basic programming constructs (such as loops and
conditional statements, etc.) as well as understanding
the logic required for a given program.

possibly including language syntax features:

Being able to understand the (concrete) syntax of a lan-
guage as well as its semantics.

In addition, one of the teachers also feels the need to distinguish
between different levels of understanding in connection with “the
progression of constructs”.

4.3 Learning objectives linked to ProgComp

In this section we will explore the answers to the interview question
“What concepts and skills do you want your students to learn in
connection with program comprehension?”.

Table 3 provides a summary of this analysis. Most teachers in-
dicated either one (38%) or two (48%) learning objectives (LO),
whereas 3 teachers indicate three LOs.

Developing a mental model of the notional machine. Nearly
half of the interviewed teachers have as a LO the development of a
mental model of the notional machine either explicitly (sometimes
including the mechanics of procedure call and return back to the
caller), or indirectly by referring to tracing tasks. Here are a few
sample excerpts from the teacher interviews:

I want them to be able to trace through code and work
to figure out how to fix their code by understanding
rather than hacking their way through it. I would also
like them to understand what is happening in memory
and how it is modified as the program executes.

For simple programs, being able to work out the output
and contents of variables. Full tracing: the pathways
through a program, what happens at branch points.
Understanding what paths could be taken (static CF)
and what paths are taken (dynamic CF).

One teacher pointed out the role of visualisation as an important
aid to build mental models of program structures. Two teachers
cited advanced topics such as activation records, pointers and multi-
file programs, while other describe simple tracing with pen and
paper or being able to explain individual constructs.

Being able to chunk and explain programs. Another common
theme was the ability to chunk code when reading. A detailed
example of this LO is given below:

I want students to learn to think at different levels of
abstraction. I would like them to think about the pro-
gramming plans/micro-patterns that they know and
to recognize them in the code they are reading and to

think about how those plans are composed together to
solve a domain problem.

Table 3: Learning objectives linked to ProgComp

Learning Objective Frequency
Develop a model of the notional machine 14
Being able to chunk and explain code 14
High level thinking and abstraction 12
Being able to write/modify/debug code 11

More often, however, their statements simply mention the ability
to explain programs, e.g.:
To read and understand code so I have them read and
explain many code examples.
Ability to be accurate about in/out specifications, to
explain program behaviour using a formal language.

High level thinking and abstraction. Several teachers also ex-
plicitly addressed the role of high level thinking and abstraction
both when reading and when writing code, as follows:

So I think [students] need a lot of practice [tracing etc.]
to be able to abstract things.

Students need to abstract the problem [...] and think
about ways to bring the core elements which are needed
to solve the problems together. There’s a lot of "imagin-
ing" what the program should look like and the students
need to be sure what they will be doing before writ-
ing the program. Abstraction, structuring would be the
terms which come to my mind.

Students must be able to explain programs, to provide
arguments, to compare and assess....

Being able to write/modify/debug code. As to the ProgComp
learning objectives, a number of teachers mostly refer to code
writing, modifying and debugging abilities, maybe also implying
problem solving skills. The underlying idea is that ProgComp can be
developed by practicing programming, by writing code, somehow
as a by-product outcome of this practice. This is well expressed by
the following excerpt from a teacher:

ProgComp is not an explicit topic, part of what they do
anyway but no lecture time explicitly devoted to Prog-
Comp in a focused manner... Mostly just teach them
how to program but hope/assume that through osmosis
they can look at other code. We are primarily concerned
about design and authoring with the implicit assump-
tion that if you can design and author you can look at
some other code and figure out what it’s doing.
Or, said a little differently, but eliciting some of the tasks in which
students are expected to engage:

In some way, code comprehension is embedded in code
writing. Debugging is also a ProgComp activity, since
students need to form a model of the program to be
able to fix it. Extend code from someone else or code
that students wrote a long time ago requires strong
ProgComp.

=

Function

Figure 5: Venn diagram showing coverage of BM dimensions
by teachers.

Other interviewees mention good coding practices such as pro-
gram modularity, “parsimony of code”, problem decomposition, or
recognition and adaptation of (recurring) program patterns.

4.4 Teachers views mapped into the BM

Finally, we will present the results of mapping interviews’ content
into cells of the BM matrix. Interestingly, although in the partic-
ipants’ perceptions of ProgComp “reading ability” was discussed
more frequently than “the notional machine”, the Programming
execution (P) domain was the most frequent theme overall (74), fol-
lowed by Function (F) as shown in Table 4. Even if the F dimension
occupies the second place (61), it is important to note that AF is
sparingly mentioned (coded for only 6 participants) and therefore
the other three categories are very strongly represented (55).

Table 4: Block Model mapping numbers

level
Dimension A B R M | Total
Surface Text 7 4 3 5 19
Program Execution 20 17 19 18 74
Function 6 14 17 24 61

The Surface dimension has the lowest numbers at most levels.
We interpret this result by considering many practitioners associate
program comprehension with connotation instead of denotation.
That is, recognizing/discerning elements in the text surface is not
considered as understanding. An alternative interpretation is that
teachers would cite more frequently those areas that students strug-
gle with, as they require more scaffolding. Thus, it makes sense
that the Surface dimension, which is considered to be easy, is cited
less frequently.

The hardest areas, conceptual knowledge at the atom level (AP)
strategic knowledge of relating goals to plans (RP and RF, MP and
MF), are strongly represented.

We consider the final goals of achieving ProgComp are related to
the cells found on the upper right corner of the Block Model. This
view is shared by the teachers as the MF category (understanding
the goal/purpose of the program) is the most frequently cited.

Interestingly, all interviewees have at least one reference to
Program execution (P) as shown in Figure 5, most commonly in
combination with Function (F) (51%). Note that one third of them
talk about ProgComp in terms that matched all 3 dimensions (T/P/F),
while none referred only to text surface (T).

As mentioned above, this is probably due to practitioners’ experi-
ences on the difficulty and hence importance of different aspects in
teaching. In the following section we will present different learning
activities, obtained — in part — in the interviews, and then in section
6.3 present some qualitative results of the interviews with regard
to difficulties and hints for possible learning trajectories.

5 COLLECTION AND CLASSIFICATION OF
PROGCOMP TASKS

Based on literature analysis, discussions within the working group,
and examples of activities provided by our interview participants,
we collected and categorised several types of activities that are
intended to help students develop ProgComp.

The tasks listed in this section also include some common type
of tasks analyzed in Section 3: tracing tasks (AP, RP), a Parsons
problem (BP), “explain in your own words” tasks (BF, RF, MF).

5.1 Methodology

We categorized ProgComp tasks by using the Block Model frame-
work. In other terms, we analysed each of the available tasks con-
sidering both at what level of complexity it focuses (atoms, blocks,
relational, macro) and what dimension of the program it looks at
(text surface, i.e. syntax; program execution, i.e. notional machine;
function, i.e. purpose or intention of the code).

This approach allowed us to enrich the list of available ProgComp
tasks. Indeed, during the analysis, we found that some parts of the
block model matrix were not covered by any task, and this led us
to devise new types of task with the potential to fill those gaps.

We will go through the block model column by column, pre-
senting first task types that pertain to the Text surface, then the
Program when executed and finally the Function of the program.
For each column we will group the task types starting from the
atom level upwards. These types of task then need to be further
specified in relation with a particular code fragment. An example
of this can be found in Figure 6.

5.2 Text Surface Tasks

The text dimension of the Block Model is based on the perceivable
representation of a program. In terms of the comprehension process,
reading and comprehending starts by perceiving, which implies
identifying and discriminating between atomic elements in the text,
then recognising their organisation into language structures of
growing complexity, up to the overall program structure.

The types of tasks in this category are then focused on statically
detectable properties, i.e. syntax as well as static typing. Even though
we restrict our attention to program notational features, the inher-
ent complexities of language constructs and dependencies may be
overwhelming to students, as demonstrated by Luxton-Reilly et al.
in their in-depth analysis [58]. Luxton-Reilly and colleagues also

provide valuable suggestions as to how to decompose a complex
task (in a novice’s perspective) into more focused components.

Other types of tasks considered in the literature to assess or
develop novices’ understanding of the static properties of programs
include, in particular:

o Tasks requiring to fix compile-time errors introduced within
the code in order to test students’ ability to identify the actual
sources of the problems [48].

o Fill-in-the-gap (e.g. choosing the right keyword) and high-
lighting (e.g. identifying the occurrences of a syntactic con-
cept) tasks to test students’ basic competencies on language
syntax [45].

e Parsons-like puzzles involving only the language notation
and tasks requiring to translate an accurate formal definition
into code [65].

To be more concrete, we list a few specific task examples, either
drawn from the literature or suggested by working group members
and participants to the interviews. The examples are classified
according to the rows of the Block Model:

Atom-Text (AT).

o Identify the keywords in a piece of code;

e Box all the assignment statements;

o List all integer variables;

e Box all arithmetic expressions (arithmetic expressions can
be recognised from purely syntactic items);

e Box the headers of all methods/procedures/functions;

e Transform between alternative syntactic forms of atomic
elements (e.g. from i++ to i=i+1).

Block-Text (BT).

e Draw a box around the code of each conditional construct;
Draw a box around the code of each loop;

Box the body of each method/procedure/function;

Check if the parentheses are placed correctly;

Draw nested boxes to represent the structure of a complex
expression.

Relational-Text (RT).

Link each occurrence of a variable with its declaration;
Identify the scope of a variable (assuming static binding);
Identify where a particular function is called;

Verify if all expressions are correctly typed;

Verify if every potential flow path of a function’s body ends
with a return statement;

e Draw a box around the initialization/termination/increment
expression of a for loop (relational for novices first learning
about loop control).

Macro Structure-Text (MT).

e Represent the overall program structure by drawing a “block-
nesting” tree;

e Restructure a program’s code so that library links are at
the top, followed by the definition of global variables and
functions/methods, followed by the main program;

o Describe the overall program block structure by drawing
nested boxes;

e Draw a diagram showing the overall program structure;
o Represent the overall program structure by drawing a tree of
function/procedure dependencies (relative to invocations);

5.3 Program Execution Tasks

In order to deal with the dynamical aspects of execution, the in-
formation provided by the program text is not sufficient, but must
be supplemented with a concept of machine state, establishing the
context(s) in which the program is in action. Thus, the program
dimension of the Block Model focuses on code execution, or, in
technical terms the operational semantics of a program.

At the heart of any characterisation of the program dimension
lies the construction of a viable mental model of the notional ma-
chine [27]. In this respect, Sorva [99] presents a comprehensive
review of research threads “that have contributed to our under-
standing of the challenges that novice programmers face when
learning about the runtime dynamics of programs and the role of
the computer in program execution”. When engaging with the task
of tracing the execution of some piece of code, “sketching” is a
common practice for students in order to overcome the working-
memory load which would be implied by following a long progres-
sion of actions and states in their mind [20, 21, 117].

Several types of tasks designed to investigate on novices’ mastery
of programming pertain to this category. Here is a list of those most
frequently encountered in the literature:

e Tasklets that focus on “atomic” aspects of the operational
semantics, by taking a “reductionist” approach to novices’
understanding and learning of programming [58].

e Tracing, predicting and “fill-in-the-gaps” (within code) tasks
designed to assess novices’ program comprehension [53, 66].

o Proglets, i.e. little programs aimed at reducing the learners’
cognitive load by exploring a single programming concept
[33], when used as the basis of tasks requiring to predict the
program outcome, to modify the code, or simply to experi-
ment freely with it.

e Parsons programming puzzles focusing on the understanding
of the notional machine [26, 39, 72].

o Tasks requiring to trace recursive computations, [37, 65, 86,
89].

o Tasks requiring either to verify reversibility or to write re-
versing code [41, 52, 67, 103].

At a finer-grained level, by considering also the suggestions
emerged within the working group and in the course of the inter-
views, we can classify a range of examples in terms of rows of the

Block Model:

Atom-Program (AP).

e Trace the program execution for some given input data,
where the program does not include procedural units (note
that this task can be accomplished at the atom level, as a
sequence of several atomic steps, each next step being deter-
mined by the previous one);

e Determine the program output (e.g. what is printed) for
given input data, again where the program does not include
procedural units;

e Determine the value of an expression for given values of the
involved variables;

e Trace a particular sequence of statements for given values
of the involved variables.

Block-Program (BP).

o Determine the number of iterations of a loop construct for a
given initial state (here recognising which repeated step is to
be counted implies reasoning at block level — the repeated
block; in particular, think of a nested conditional in a loop);

e Identify recurring instrumental blocks such as that for swap-
ping the values of two variables (the assumption is that the
identification is based on reasoning about the execution of
short sequences of statements);

o Identify the block(s) implementing some specific program
pattern, e.g. among those catalogued by [2] or [74];

e Solve a Parsons puzzle for a specific programming pattern.

e Change a forloop into a while loop.

Relational-Program (RP).

o Identify the variable(s) playing a specific role (in the example
of Listing 1: stepper, most recent holder, most wanted holder,
walker);

e Trace the program execution for a given input, where the
program includes calls to procedural units (this task requires
to establish connections between states relative to the caller’s
code and to the called procedural unit);

o Verify whether some branches of a switch/case statement
are redundant, i.e. can never be executed;

o Identify states, i.e. values of one or more variables, that could
result in an infinite loop;

o Identify the scope of a variable.

Macro Structure-Program (MP).

o Verify if a program statement or block is ever reachable
during program execution;

o Identify a comprehensive set of inputs to check all possible
computation flows of a program;

o Select from given options the program that is computation-
ally equivalent to a reference one, i.e. which gives rise to the
same sequence of variable states for every admissible input
data;

e Explain why two given programs are not computationally
equivalent;

o Estimate the computational costs of the program.

5.4 Function or Purpose Tasks

Relative to the function dimension of the Block Model, a new con-
text, introducing properties extrinsic to the program at hand, comes
into play.

Drawing a borderline between (abstraction on) code execution
features and purpose-driven features is not always straightforward,
and it is likely to depend to a large extent on the knowledge assumed
at a certain learning stage.

However, well-developed tasks exploring this dimension of pro-
gram comprehension are more difficult to envisage. As pointed

out by Begum and colleagues [4], “[v]ery little research has in-
vestigated the behavior of programmers from understanding the
problem specification to computer program”.

Among the tasks considered in the literature, in which novices
are required to understand the program in connection with an
extrinsic problem domain we can mention the following:

e Tasks asking to explain in words® [54, 66, 113] the purpose
of a program.

e “Fill-in-the-gaps” tasks designed to assess novices’ under-
standing of the relationships between a program and the
problem being solved [53].

e Parsons puzzles focused on the problem to solve [26, 39, 72].

o Tasks requiring to choose more meaningful names for pro-
gram functional units, or to chunk code segments and define
semantically meaningful functions [65].

In more detail, again by integrating suggestions coming from
the working group as well as the interview participants:

Atom-Function (AF).

o Identify the purpose of an expression or a simple statement,
in connection with the problem domain (e.g. of an expres-
sion/assignment for converting Fahrenheit to Celsius)

e Identify the purpose of a condition w.r.t. the problem domain
(e.g. divisibility for some positive integer);

e Rename a constant with an appropriate name from the prob-
lem.

Block-Function (BF).

e Choose an appropriate name for a simple procedural unit
(method, procedure or function, where the unit body consists
in a simple block);

e Summarise in a short sentence what the block goal is;

o Identify the program block(s) with a given function, de-
scribed in problem-domain terms;

e Write comments explaining the purpose of a block and of
the statements it is built from.

Relational-Function (RF).

o Choose an appropriate name for a variable (usually the func-
tion of a variable can be inferred by establishing relationships
between different occurrences of it);

e Summarise in a short sentence the purpose of a simple block
invoking one or more methods/procedures/functions;

e Solve a Parsons puzzle for a given code purpose by reordering
simple blocks (it requires to identify the sub-purpose of each
block and their relationships)

o Identify functionally equivalent blocks, i.e. blocks giving rise
to the same overall state transformation (selection from a
few predefined options).

Macro Structure-Function (MF).

e Choose an appropriate name for a program;

e Summarise in a short sentence what the program goal is;

o Select the sentence, from a few options, which most accu-
rately summarises the program’s purpose;

3called in the literature “Explain in plain English” but students may use their native
language instead

o Create meaningful test cases for the allowed inputs and ex-
pected outputs (test cases are usually based on the program’s
purpose).

5.5 Towards a repository of Learning Activities

Due to time constrains, we were not able to set up an online reposi-
tory for the collected task. However, it is a long-term goal to either
create of join an open-source “live” repository where practitioner-
s/teachers as well as researchers in the field of computer science
education can find and contribute ProgComp resources. With this
goal in mind, we have designed a template to be attached to each
submitted ProgComp activity, which provides context and supports
its use.

The template incorporates the following fields: the coding that
describes the activity as in the a block model; pre-requisites (CS
and ProgComp); materials provided by instructor; instructions for
students; the new things that students will learn from this activity;
how the activity can be designed as an individual or a team-based
activity; and the perceived engagement as in the ICAP model [15].

To validate the template, which is included in appendix C, a sub-
group filled a template form for four different types of activities :
(a) identifying the role/purpose of variables, (b) commenting select-
ed/key lines of code or code snippets, (c) tracing, and (d) debugging
(finding and fixing an error).

6 MOVING FROM SINGLE TASKS TO
LEARNING TRAJECTORIES

Learning trajectories (LT) have garnered the attention of math and
science educators [55] because of their ability to model how the
student’s thinking about a specific topic evolves, which supports
research-based curriculum development [88]. Such research-based
curriculum development has taken place, for example, in the math-
ematics education community [17].

However, empirical knowledge about LT is largely absent in com-
puter science education. One reason is that there is no established
methodology to systematize and define learners’ progression in CS
disciplines. Some recent studies attempted to extract data from the
literature to create learning trajectories for sequence, conditionals,
and repetition [78]; abstraction [76] and debugging [77]. These LT
provide a path for particular aspects for programming and com-
prehension, but to the best of our knowledge, there is no learning
trajectory for ProgComp as a whole skill.

In the following sections, we present our methodology to create
LT for ProgComp. This methodology could assist instructors in
two ways. First, it provides practical examples for instructors of
how to decompose a task that fosters ProgComp into sub-tasks that
reduce the complexity with respect to the overall task, making
it suitable for beginners, and later move to more advanced levels
of complexity aimed to advanced learners, working on different
aspects of ProgComp, as presented by the levels of the Block Model.
Second, it provides a guideline that could help instructors identify
where a specific task fits into the Block Model and what particular
aspects of program comprehension are being fostered.

6.1 Methodology

Using the work of Lister and colleagues as a starting point, the
“Leeds” ITiCSE working group Lister et al. [53] concluded that stu-
dents lacked basic skills pre-requisite for problem-solving, such
as comprehending program code. More recently, assessment tasks
were found to be more complex than academics expected [58]. For
example, tasks typically require both algorithmic thinking (for ex-
ample initializing a variable before updating it), as well as a more
advanced understanding of data representation (assigning a value
to a property) [92]. In their research, Luxton-Reilly et al. [58] state
that most assessments used in formal examinations combine nu-
merous heterogeneous concepts, resulting in complex and difficult
tasks. To develop tasks to determine a student’s mastery of particu-
lar concepts, the Luxton-Reilly et al. 2017 ITiCSE working group
decomposed complex assessments into atomic conceptual elements
which can be assessed independently. Their work, which extends
the McCracken et al. [62] research, shows that a single code-writing
task often involves a plethora of conceptual knowledge.

Duran et al. [30] define these atomic elements as plans and sub-
plans that can be extracted from concrete programs by analyzing
the relationship of syntactic and semantic elements in the code
and the respective cognitive actions leaners need to perform to
comprehend the program. Our work uses Duran et al. model to
provide cues on how to decompose a ProgComp task into sub-tasks
and fit them in the Block Model. What becomes evident is that
comprehending code too can be decomposed into multiple facets,
each of which can be practiced independently.

The LT for ProgComp defines a spectrum of activities that will
foster programming comprehension using as many levels in the
Block Model as desired by the instructor. Different levels usually
will use different activities (see section 5 for examples) that are
better suited to achieve the desired learning outcome. Creating a
LT is an iterative process where the instructor evaluate leaner’s
prior-knowledge in a particular context (e.g. using tests [71] or self-
evaluation instruments [28, 29]) to identify a sub learning-outcome
appropriate to learners’ needs (extracted from the main task learn-
ing outcome), match this learning outcome to a given Block Model
level and use an appropriate activity to foster ProgComp at that level.
The process repeats until the instructor is satisfied with the granu-
larity of the LT (the number of activities in different levels) or if the
LT reaches the lowest level of complexity in the Block Model (the
sub-task is already simple enough, e.g. uses an Atomic-Text-Surface
activity) and no further refinements are required.

LT could be used by instructors in two different ways, depend-
ing on their goal. In the first one, the instructor iterates through
one task’s learning outcomes and evaluate if students’ needs, prior
knowledge, and granularity will be achieved with a proposed spec-
trum of activities. If tasks are too easy or too difficult the instructor
can further decompose the tasks until a saturation point is reached.
In a second way, the instructor follows an already defined learning
trajectory, using the planned tasks to identify gaps in the existing
set of activities and integrate new activities where needed. The
LT could also work in tandem with diagnosing tools, where learn-
ers’ difficulties in a particular level of the Block Model could be
mitigated by using the appropriate activities.

int[] A = {20,24,23,35,30,35};
int c=1;
int b=1[0];
for(int i=1; i<A.length;
if(ALil>b){
b=A[i];
c=1;
} else {
if(ALil==b){

Cc++;

i++){

}
3
3
System.out.println(c);
Listing 1: Activity example: summarise the goal of the
following program.

In the next section, we provide an example of a walkthrough of
the development of an LT where a task may seem too challenging
for some learners or have some implicit assumptions that may not
match the teacher’s cohort. In this example, we will show how we
can unpack a complex task into a set of possible class activities or
support activities.

6.2 Using the BM to develop a trajectory

As an example of LT, we take a typical comprehension task, to
summarise the goal of a program in a short sentence (i.e. an “explain
in plain English” task, as described in section 5), and show how it
can be decomposed into subtasks, each fitting into one of the levels
in the Block Model matrix.

We consider the following problem: Given an array A of temper-
ature measurements (in degrees Celsius), summarize (in words) the
goal of the Java program presented in Listing 1.

A correct solution for this task would be a sentence similar
to “print the frequency of the highest temperature in the dataset”.
However, for learners to achieve the correct solution, many differ-
ent sub-tasks of program comprehension have to be performed:
comprehend syntactic elements of the programming language, com-
prehend the behavior (semantics) of these elements in the code,
and comprehend the goal of each particular element in the code.
These subtasks are merged to create increasingly complex plans,
moving up in the Block Model, until the highest level plan which is
the overall goal of the program itself.

As discussed in previous sections, the summarizing activity
(Macro-Function level) might overwhelm learners without suffi-
cient practice or prior knowledge. Therefore, we decomposed the
task according to the 12 levels of the Block Model table. For each
level, we used our PCK knowledge and the ProgComp activities
and experiences from the teacher interviews to identify an activity
which would most appropriately practice the corresponding aspect
of ProgComp. We worked out an entire example, finding an activity
for every level. Before describing the activities, we note that we did
this for a second task format (to find good variable names for the
variables in a program, picking from a list of suggestions), and were
not able to find related, simpler, exercises for all the Block Model
levels. Hence, the aim here is to show how a more complex task can
be decomposed into simpler activities, rather than to suggest that

one should be able to find a simpler activity for all Block Model
levels.

Our decomposition of the program in Listing 1 is given in Fig-
ure 6. Considering the Block row in Figure 6, the Text Surface level
now asks the learner to identify a section of code, consisting of a
few lines, and with a higher-level naming — the code belonging to
the else statement. While a student may do this quite mechanically,
initially, by reading through line by line from else to the appropriate
closing brace, with practice they will be able to abstract over the
detail, and see the block of code as a unit.

An instructor can assign any of the ProgComp sub-tasks in the
BM to a learner. If a learner is unable to complete the task, this can
indicate that their knowledge gap or fragile knowledge resides in
this or a prerequisite block, so the instructor could use activities in
the previous levels of the BM to direct the learner to activities that
could improve ProgComp and close their knowledge gap. A learner
who can complete a task should be challenged with a task residing
above or next to the currently accomplished one. In each case, there
are many types of ProgComp tasks which an instructor can select
from. We made a template to describe these tasks as well as what
can be done to adjust them to make them more/less difficult.

6.3 Linking WG Outcomes to Practitioners’
Views

The analysis of learning tasks with e.g. regard to their prerequisites,
as well as their arrangement and hints for possible learning trajec-
tories should help teachers (pre-service and in-service) to develop
their PCK of teaching programming. In this final section we will
described how these two outcomes relate to practitioners views
and needs.

As one teacher phrased it: “we just give them something to
understand, a program, we just don’t tell them you know, break
this down.” The work done here can inform teachers how to break
down a programming task, and also concrete examples and learning
activities to support students also in solving those sub-tasks. This
enriches the Block model in a way that it gets more approachable
for teaching practice.

The need to teaching ProgComp. : As seen on related works and
some interviews, the idea of including ProgComyp into teaching pro-
gramming is quite new, but is slowly spreading. As one interviewee
put it:

In the past, I always relied on the idea that it was
my primary goal to teach students how to write pro-
grams rather than how to understand them. I some-
how assumed that the latter skill would come as a
consequence of the former. [...] Although the abil-
ity to write programs requires an understanding of
the state-transition machine that works behind the
scenes, the ability to read and understand programs
has some additional complication on its own right,
and requires some specific approaches and tricks that
go beyond those that are required to write programs.

Another teacher was more aware of the BM and wanted to foster
ProgComp, however could not find practical ways to do so"

Indicate overall
program structure

Determine redundant

Summarize purpose
code)
Summarize the goal of the

Draw nested boxes to indicate the program using a short sentence.

overall program block structure. Identify and check all potential

execution flows. Does each
int[] 1 = {20,24,23,35,30,35}; statement get executed at least
MACRO int a=1;

once?
int b=1[e];
ffor(int i=1; i<1.length; i++){]
[M] if(1[i]>b){
b=1[i]; A: The code block below will not
a=1; be executed if all elements in the
else { array have the same value or i
if(1[i]==b){ they are all smaller than the first
| element. A: Prints the frequency of the
) b=1[i]; highest temperature in the array.
I a=1;
System.out.printin(a);
Identify scope Complete the Reflect on code
code and diagram

Indentify the scope of variable b. The code and diagram below
represent the same program.
Complete both so they have a
correct behavior.

For the code below, propose a
more appropriate initialization
than int b = 0.

int[] 1 = {20,24,23,35,30,35};
i, (2022303530, ! int a=1;
for(72)1 int b=o;
S elee for(int i=e; i<l.length; i++){
. | sl o iF(1[i]b){
%nt[] i = {20,24,23,35,30,35}; [EIRTRER be1[il;
int a=1; : <13
RELATIONAL || [o o
for(int i=1; i<l.length; i++){ ystem-out-pristinla); $FC 1[i]==b)¢
(R) $F(1[Db) s
b=1[i];) ’
a=1;)
} else {)
aes ﬂfzb it System.out.println(a);
}
}
}
System.out.println(a); A: b, which is the maximum value
in the temperature array could be
negative.
A better alternative could be int
b = 1[0]
Identify blocks Parson’s puzzles

Explain purpose of a

block of code
Draw a box around the code that The following program segment
belongs to the else statement. should print the highest value in . .
Describe the purpose of this block
) the array. Rearrange the blocks of code
?"2[] i = {20,24,23,35,30,35); into the for loop in the correct ’
int a=1;
e be1lel; order to complete the program. %nt[] 1 = {20,24,23,35,30,35};
BLUCK for(int i=1; i<l.length; i++){ int t_’=l[?];))
16 1[1]5b) — for(int =05 i< L.length; i+)
(B) b-1[i]; 7 AF(ILAT20
an1; b=1[i];
} else { — — i
if(1[1]==b){ s ¥
att; system.out.println(b);
} st

} A: The block determines, stores in
} variable b, and prints the
System.out.println(a); maximum temperature in a

given array.
Identify statements Trace values Explain :‘;f;?tl ofan
Draw a box around each
assignment statement. Given that array 1 represents
int[) (= 00,26,5,55,50,5% daily temperature measurements
ATOMIC =0

and b is the maximum

=10 temperature measured before day
[A] fo:i();![:ﬁl,):d.)ength, [iz=3ple Determine the value of a after i, what i{ t[he]purpgse of test
T i] >
b=1(1] .
execution. in terms of the problem?
} else {
F(1[d]==b){
) A: Tests if the temperature on day
) i is higher than b, hence hotter
)) A+ a has the value 2. than any previous day.
System.out.println(a);

TEXTSURFACE (T) || PROGRAM EXECUTION (P| | FUNCTION/INTENTION (F)

Figure 6: Exercise decomposition of the Listing 1 program. In each of the BM levels, the title (blue) describes the goal of the
activity. Below the title there is an example statement of the activity, followed by the answer (A) of the activity.

so I was studying about this model, the block model
and ehm.. [...] but I never really understood how I
would practise it as a teacher. [...] So what I would
like is to have this model translated to exercises and
tasks.

As shown in Section 4, most practitioners (with a few excep-
tions) provided partial definitions of ProgComp with emphasis on
“ability to read code”. However, their learning objectives and task
descriptions provided a good coverage of the Program Execution
(P) and Function (F) dimensions.

Progressions within the Block Model. Chunking and the ability to
automate schemas is one of the most important mechanisms that
allow students to progress in course content, moving upwards in the
BM matrix towards more complex activities. One of our interview
participants provides a good example of upwards progression from
atoms to blocks:

Most students will understand the low-level effect of
single instructions, but fail to be able to promote this
understanding to more complex structures. For exam-
ple, when they get exposed to a for-loop for the first
time, it is good that they understand the exact order
in which things take place (initialization, test, loop
body, update, test, etc.) but then they should move on
and think of the whole structure more abstractly. In
a way, they should forget the details and look at the
overall effect of the loop as a whole.

On the other hand, phenomenographic investigations (see section 6)
and instructional experience suggest that typical learning processes
might progress from left to right in the BM matrix. The difficulty
to progress rightwards (from Program-Execution to Function) is
testified by another teacher as follows:

Students tend to explain how a program works in
terms of operations of the notional machine rather
than in connection with the problem to be solved.

That is, they have problems to infer the purpose of the program
from the mechanics in the text surface and program execution.
However, to the best of our knowledge, there are no studies that
clarify if the knowledge and skills about the three dimensions are
developed in sequence, or (maybe partly) in parallel. According to
earlier work from Pennington [73], for instance, the type of knowl-
edge inferred, and hence the program’s understanding achieved,
depend on the task at hand (e.g. debugging, refactoring, etc.).

7 CONCLUSIONS AND FUTURE WORK

The working group report has two major goals: (g1) to collect and
define learning activities that explicitly address key components
of program comprehension and (g2) to define possible learning
trajectories that will guide teachers as they select and sequence
those learning activities in their CS0/CS1/CS2 or K-12 courses.

Learning Activities for ProgComp. Section 5 has presented more
than 60 different learning tasks/activities for ProgComp. Tasks have
been mapped into cells of the BM matrix according to the intended
learning goals. Figure 6, in particular, provides an overview of such
classification, based on one example.

This list of learning tasks gives a first overview on different
learning activities. In appendix C a sheet is shown, that outlines a
comprehensive description of the learning activities.

To provide such a comprehensive description for each of the
listed learning activities remains future work.

The work presented here gives some tools to tackle such a task
in terms of a methodology or approach for an educational analysis
of ProgComp learning activities. This approach has been outlined
in sections 3.2 and following, as well as in section 6.2. In section 3.2
three learning tasks have been analysed with regard to their specific
role for ProgComp. Such general analysis forms the basis to describe
them according to the template in appendix C.

In addition, the general analysis of task types can be done accu-
rately using one specific example, as shown in section 6.2, where
the implications of the code in Listing 1 have been discussed in
detail.

Interpretation: The most striking effect of this approach is a
changed perspective on learning tasks and learning trajectories -
based on the simple question: What does it mean, if a learner isn’t
able to solve the ProgComp task at hand? The outlined approach
to describe tasks is also a methodology to answer this question:
What can a teacher do in case of learning problems? One generic
answer would be to provide the learner with easier tasks, and give
the possibility for more practice with such easier tasks. Well, one
difficult question to answer would b: what are easier tasks? And
often such an answer is based on thinking about the task — with
the approach at hand this is possible, but the fine grained analysis
opens room to discern specific, probably individual learning issues
of the learner — that is, there is room for several different types of
easier learning tasks that would aim at different prerequisites. As
described by Clear [16] the overall problem in learning program-
ming (and ProgComp as related subtask) is the need to zoom-in and
zoom-out:

a process by which we move successively from the
part to the whole and back again, to progressively
develop a coherent and consistent conception of the
software system we are developing or attempting to
comprehend.

The 12 cells of the Block model describes the different steps or
moves in this zooming in and out, and probably learners can have
fragile, moderate, or deep knowledge for each cell, and need in cor-
respondence different time on different learning tasks [16]. With
the resources provided by this report, a teacher is supported in
understanding what pertains to cells that need specific attention,
and in ideas for learning activities that foster the skills and knowl-
edge needed in connection with the specific cells, i.e. steps along a
learning path.

So, in addition, the role of such learning activities was discussed
in this report from two perspectives: its connection to “learning to
program” in the literature, see Section 2.2; and the views of practi-
tioners as elicited in interviews we have conducted, see Section 4.

It is difficult to give a comprehensive summary and interpretation
of these, but we want to highlight two insights. First, ProgComp is
a complex issues which needs specific learning activities. Among
these, tracing tasks are interesting as learning activities for novices
- they are probably really important to lay a foundation for more

complex steps, and thus it seems useful to train them so that it
becomes automated. This might be a universal learning stage for
all learners in which focusing on tracing activities seems to be
important, as e.g. argued by Lister.

The other aspect comes from the interviews with practitioners:
From this it seems that the text surface dimension is not so impor-
tant, or: easier to master and hence doesn’t need to get that much
attention as the other learning steps.

Learning Trajectories for ProgComp and Programming. To help prac-
titioners in designing successful learning trajectories in their classes
is the second major goal of this report — but we didn’t present one
or more exemplary learning trajectories — why?

In order to be flexible and support different coverage of Prog-
Comp depending on their learning needs, we focused on a different
outcome: a toolset that supports customised design of learning tra-
jectories, as cited before. Figure 6 outlines the core of this approach:
A detailed analysis of the prerequisites of a task - which if done for
all tasks gives an idea of possible learning trajectories.

Based on the literature review and the practitioner interviews,
such learning trajectories are likely to have a general direction from
the lower left corner of the Block Model to the upper right corner.

Future work. To develop comprehensive descriptions for each task is
future work, and could be done in connection to (existing) learning
repositories (see appendix C for a template that could be used when
submitting task to such repositories).

We have presented an overview of the interviews with practi-
tioners. There is however more interesting information we want to
explore further in a fine grained analysis.

A major contribution in our point of view is the method for a
fine-grained analysis of ProgComp tasks together with a collection
of many different learning tasks. It seem very valuable to develop a
teacher Professional Development (PD) kit to promote the use of
ProgComp tasks in K-12, and to inform them on the ways to develop
their own trajectories.

While we have collected so far a little more than 60 different
learning tasks for ProgComp, it still seem useful to mine other tasks
repositories, to analyse their program comprehension coverage.
Together with such an overview of different approaches and learn-
ing tasks for ProgComp it is also useful to analyse in more detail
the relevancy and need for each type. Probably there are some hot
spots that need more attention than others.

Finally, these future steps will provide fertile ground to inves-
tigate possible learning trajectories in the classroom and towards
more effective learning activities and progressions.

REFERENCES

[1] Owen Astrachan, Garrett Mitchener, Geoffrey Berry, and Landon Cox. 1998. De-
sign patterns: an essential component of CS curricula. In SIGCSE ’98: Proceedings
of the twenty-ninth SIGCSE technical symposium on Computer science education.
ACM, New York, NY, USA, 153-160. https://doi.org/10.1145/273133.273182
Owen Astrachan and Eugene Wallingford. 1998. Loop Patterns. In Proceedings
of the Fifth Pattern Languages of Programming Conference (PLoP’98). https:
//users.cs.duke.edu/~ola/patterns/plopd/loops.html

[3] E.Barendsen, V. Dagiene, M. Saeli, and C. Schulte. 2014. Eliciting computing
science teachers’ PCK using the Content Representation format: Experiences
and future directions. In Proceedings of ISSEP. 71-82.

Marjahan Begum, Jacob Nerbjerg, and Torkil Clemmensen. 2018. Strategies of
Novice Programmers. In Proceedings of the 41st Information Systems Research

o,

=

Seminar in Scandinavia: Digital Adaptation, Disruption and Survival (IRIS2018)
(IRIS). http://hdl.handle.net/10398/9686

Richard Bornat, Saeed Dehnadi, and David Barton. 2012. Observing Mental
Models in Novice Programmers. In Proc. 24th Annual Workshop of the Psychology
of Programming Interest Group. Article 6, 7 pages.

Ruven Brooks. 1977. Towards a theory of the cognitive processes in computer
programming. International Journal of Man-Machine Studies 9, 6 (1977), 737-751.
https://doi.org/10.1016/S0020-7373(77)80039-4

Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International journal of man-machine studies 18, 6 (1983), 543-554.
https://doi.org/10.1016/S0020-7373(83)80031-5

Christine Bruce, Lawrence Buckingham, John Hynd, Camille Mcmahon, Mike
Roggenkamp, and Ian Stoodley. 2004. Ways of experiencing the act of learning
to program: A phenomenographic study of introductory programming students
at university. Journal of Information Technology Education 3 (2004), 143-160.
Malte Buchholz, Mara Saeli, and Carsten Schulte. 2013. PCK and reflection in
computer science teacher education. ACM International Conference Proceeding
Series (11 2013). https://doi.org/10.1145/2532748.2532752

Teresa Busjahn and Carsten Schulte. 2013. The Use of Code Reading in Teaching
Programming. In Proceedings of the 13th Koli Calling International Conference
on Computing Education Research (Koli Calling ’13). ACM, New York, NY, USA,
3-11. https://doi.org/10.1145/2526968.2526969

Pauli Byckling and Jorma Sajaniemi. 2006. A role-based analysis model for
the evaluation of novices’ programming knowledge development. In ICER ’06:
Proceedings of the second international workshop on Computing education research.
ACM, 85-96.

Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo.
2016. Developing a Computer Science Concept Inventory for Introductory
Programming. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education (SIGCSE ’16). ACM, New York, NY, USA, 364-369.
https://doi.org/10.1145/2839509.2844559

Ibrahim Cetin. 2015. Student’s Understanding of Loops and Nested Loops in
Computer Programming: An APOS Theory Perspective. Canadian Journal
of Science, Mathematics and Technology Education 15, 2 (Feb. 2015), 155-170.
https://doi.org/10.1080/14926156.2015.1014075

Yves Chevallard and Marianna Bosch. 2014. Didactic transposition in mathe-
matics education. Encyclopedia of mathematics education (2014), 170-174.
Michelene T. H. Chi and Ruth Wylie. 2014. The ICAP Framework: Link-
ing Cognitive Engagement to Active Learning Outcomes. Educational Psy-
chologist 49, 4 (2014), 219-243. https://doi.org/10.1080/00461520.2014.965823
arXiv:https://doi.org/10.1080/00461520.2014.965823

Tony Clear. 2012. The Hermeneutics of Program Comprehension: A "Holey
Quilt’ Theory. ACM Inroads 3, 2 (June 2012), 6-7. https://doi.org/10.1145/
2189835.2189837

Douglas H. Clements and Julie Sarama. 2009. Learning trajectories in early
mathematics—sequences of acquisition and teaching. Encyclopedia of language
and literacy development (2009), 1-7.

Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. *Explain in Plain English’ Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (SIGCSE °14). ACM, New York, NY, USA, 591-596.
https://doi.org/10.1145/2538862.2538911

Malcolm Corney, Raymond Lister, and Donna Teague. 2011. Early Relational
Reasoning and the Novice Programmer: Swapping As the "Hello World" of
Relational Reasoning. In Proceedings of the Thirteenth Australasian Computing
Education Conference - Volume 114 (ACE ’11). Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 95-104. http://dl.acm.org/citation.cfm?id=
2459936.2459948

Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial.
2017. Using Tracing and Sketching to Solve Programming Problems: Replicating
and Extending an Analysis of What Students Draw. In Proceedings of the 2017
ACM Conference on International Computing Education Research (ICER ’17). ACM,
New York, NY, USA, 164-172. https://doi.org/10.1145/3105726.3106190
Kathryn Cunningham, Shannon Ke, Mark Guzdial, and Barbara Ericson. 2019.
Novice Rationales for Sketching and Tracing, and How They Try to Avoid It.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’19). ACM, New York, NY, USA, 37-43.
https://doi.org/10.1145/3304221.3319788

Michael De Raadt. 2008. Teaching programming strategies explicitly to novice
programmers. Ph.D. Dissertation. University of Southern Queensland.
Michael De Raadt, Richard Watson, and Mark Toleman. 2006. Chick sexing
and novice programmers: explicit instruction of problem solving strategies. In
Proceedings of the 8th Australasian Conference on Computing Education-Volume
52. Australian Computer Society, Inc., 55-62.

Michael De Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and
assessing programming strategies explicitly. In Proceedings of the Eleventh Aus-
tralasian Conference on Computing Education-Volume 95. Australian Computer
Society, Inc., 45-54.

https://doi.org/10.1145/273133.273182
https://users.cs.duke.edu/~ola/patterns/plopd/loops.html
https://users.cs.duke.edu/~ola/patterns/plopd/loops.html
http://hdl.handle.net/10398/9686
https://doi.org/10.1016/S0020-7373(77)80039-4
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1145/2532748.2532752
https://doi.org/10.1145/2526968.2526969
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1080/14926156.2015.1014075
https://doi.org/10.1080/00461520.2014.965823
http://arxiv.org/abs/https://doi.org/10.1080/00461520.2014.965823
https://doi.org/10.1145/2189835.2189837
https://doi.org/10.1145/2189835.2189837
https://doi.org/10.1145/2538862.2538911
http://dl.acm.org/citation.cfm?id=2459936.2459948
http://dl.acm.org/citation.cfm?id=2459936.2459948
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3304221.3319788

[25]

[26]

[27

[28

™
0,

[30

(31

[32

[33

(34

(35

[36

%
=

[38

(39]

(40

[41

[42

[43

(44

[45

[46]

(47

Lionel E. Deimel, Jr. 1985. The Uses of Program Reading. SIGCSE Bull. 17, 2
(June 1985), 5-14. https://doi.org/10.1145/382204.382524

Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new
exam question: Parsons problems. In Proceedings of the fourth international
workshop on computing education research. ACM, 113-124.

Benedict du Boulay. 1986. Some Difficulties of Learning to Program. J. of
Educational Comput. Research 2, 1 (1986), 57-73.

Rodrigo Duran, Jan-Mikael Rybicki, Arto Hellas, and Sanna Suoranta. 2019.
Towards a Common Instrument for Measuring Prior Programming Knowledge.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’19). ACM, New York, NY, USA, 443-449.
https://doi.org/10.1145/3304221.3319755

Rodrigo Duran, Jan-Mikael Rybicki, Juha Sorva, and Arto Hellas. 2019. Ex-
ploring the Value of Student Self-Evaluation in Introductory Programming. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research (ICER °19). ACM, New York, NY, USA, 121-130. https://doi.org/10.1145/
3291279.3339407

Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an Analysis of
Program Complexity From a Cognitive Perspective. In Proceedings of the 2018
ACM Conference on International Computing Education Research. ACM, 21-30.
J. Philip East, S. Rebecca Thomas, Eugene Wallingford, Walter Beck, and Janet
Drake. 1996. Pattern Based Programming Instruction. In 1996 Annual Conference.
ASEE Conferences, Washington, District of Columbia.

Anna Eckerdal and Anders Berglund. 2005. What does it take to learn ’pro-
gramming thinking’?. In ICER ’05: Proceedings of the first international work-
shop on Computing education research. ACM, New York, NY, USA, 135-142.
https://doi.org/10.1145/1089786.1089799

Carol Edmondson. 2009. Proglets for First-year Programming in Java. SIGCSE
Bull. 41, 2 (June 2009), 108-112. https://doi.org/10.1145/1595453.1595486
Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
Conference on Computing Education Research. ACM, 20-29.

Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Modernizing
Plan-Composition Studies. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (SIGCSE ’16). ACM, New York, NY, USA, 211-
216. https://doi.org/10.1145/2839509.2844556

Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning
increases student performance in science, engineering, and mathematics. Pro-
ceedings of the National Academy of Sciences 111, 23 (2014), 8410-8415.

Tina Gotschi, Ian Sanders, and Vashti Galpin. 2003. Mental Models of Recursion.
In Proc. of the 34th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA, 346-350.

Orit Hazzan, Tami Lapidot, and Noa Ragonis. 2011. Guide to Teaching Computer
Science: An Activity-Based Approach (1st ed.). Springer Publishing Company,
Incorporated.

Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How Do
Students Solve Parsons Programming Problems?: An Analysis of Interaction
Traces. In Proceedings of the Ninth Annual International Conference on Inter-
national Computing Education Research (ICER ’12). ACM, New York, NY, USA,
119-126. https://doi.org/10.1145/2361276.2361300

Matthew Hertz and Maria Jump. 2013. Trace-based Teaching in Early Pro-
gramming Courses. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 561-566.
https://doi.org/10.1145/2445196.2445364

Cruz Izu, Claudio. Mirolo, and Amali Weerasinghe. 2018. Novice Programmers’
Reasoning About Reversing Conditional Statements. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (SIGCSE ’18). ACM,
New York, USA, 646-651. https://doi.org/10.1145/3159450.3159499

Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A Study of Code Design
Skills in Novice Programmers Using the SOLO Taxonomy. In Proceedings of the
2016 ACM Conference on International Computing Education Research (ICER ’16).
ACM, New York, NY, USA, 251-259. https://doi.org/10.1145/2960310.2960324
Jeffrey D Karpicke and Janell R Blunt. 2011. Retrieval practice produces more
learning than elaborative studying with concept mapping. Science 331, 6018
(2011), 772-775.

Walter Kintsch. 1998. Comprehension: A paradigm for cognition. New York:
Cambridge.

Matthias Kramer, Mike Barkmin, and Torsten Brinda. 2019. Identifying Predic-
tors for Code Highlighting Skills: A Regressional Analysis of Knowledge, Syntax
Abilities and Highlighting Skills. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’19). ACM,
New York, NY, USA, 367-373. https://doi.org/10.1145/3304221.3319745

Peter Kroes. 2012. Technical Artefacts: Creations of Mind and Matter — A Philoso-
phy of Engineering Design. Springer, Dordrecht, Heidelberg, New York, London.
https://doi.org/10.1007/978-94-007-3940-6

Marja Kuittinen and Jorma Sajaniemi. 2004. Teaching roles of variables in
elementary programming courses. In ITiCSE ’04: Proceedings of the 9th annual

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62

[63

[64

[65

[66

]

]

SIGCSE conference on Innovation and technology in computer science education.
ACM, 57-61.

Sarah K. Kummerfeld and Judy Kay. 2003. The Neglected Battle Fields of
Syntax Errors. In Proceedings of the Fifth Australasian Conference on Computing
Education - Volume 20 (ACE "03). Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, 105-111. http://dl.acm.org/citation.cfm?id=858403.858416
Clifton Kussmaul. 2012. Process oriented guided inquiry learning (POGIL)
for computer science. In Proceedings of the 43rd ACM technical symposium on
Computer Science Education. ACM, 373-378.

Marcia C. Linn. 1985. The Cognitive Consequences of Programming Instruction
in Classrooms. Educational Researcher 14, 5 (May 1985), 14-29. https://doi.org/
10.3102/0013189X014005014

Raymond Lister. 2007. The Neglected Middle Novice Programmer: Reading
and Writing without Abstracting. In Proceedings of the 20th Conference of the
National Advisory Committee on Computing Qualifications (NACCQ’07), S. Mann
and N. Bridgeman (Eds.). 133-140.

Raymond Lister. 2011. Concrete and other neo-piagetian forms of reasoning in
the novice programmer. Conf. Res. Pract. Inf. Technol. Ser. 114 (2011), 9-18.
Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrém, Kate Sanders, Otto
Seppéla, Beth Simon, and Lynda Thomas. 2004. A Multi-national Study of
Reading and Tracing Skills in Novice Programmers. In Working Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-
WGR °04). ACM, New York, NY, USA, 119-150. https://doi.org/10.1145/1044550.
1041673

Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Chris-
tine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Programmers
and the SOLO Taxonomy. In Proceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education (ITICSE "06). ACM,
New York, USA, 118-122. https://doi.org/10.1145/1140124.1140157

Joanne Lobato and C David Walters. 2017. A Taxonomy of Approaches to Learning
Trajectories and Progressions. NCTM, 74-101.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proc. 4th Int. Workshop on Computing Education Research (ICER
’08). ACM, New York, USA, 101-112. https://doi.org/10.1145/1404520.1404531
John Loughran, Pamela Mulhall, and Amanda Berry. 2004. In search of ped-
agogical content knowledge in science: Developing ways of articulating and
documenting professional practice. Journal of Research in Science Teaching 41, 4
(2004), 370-391.

Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mithling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports (ITiCSE-WGR ’17). ACM, New York, NY, USA, 47-69. https://doi.org/10.
1145/3174781.3174784

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. 2010. The Scratch programming language and environment. ACM
Transactions on Computing Education (TOCE) 10, 4 (2010), 16.

Richard E. Mayer. 1981. The Psychology of How Novices Learn Computer
Programming. ACM Comput. Surv. 13, 1 (March 1981), 121-141. https://doi.org/
10.1145/356835.356841

Robert McCartney, Jan Erik Mostrém, Kate Sanders, and Otto Seppéla. 2004.
Questions, Annotations, and Institutions: observations from a study of novice
programmers. In Proceedings of the 4th Koli Calling International Conference on
Computing Education Research (Koli Calling *04). ACM, New York, USA, 11- 19.
Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment of
Programming Skills of First-year CS Students. SIGCSE Bull. 33, 4 (Dec. 2001),
125-180. https://doi.org/10.1145/572139.572181

Tanya J. McGill and Simone E. Volet. 1997. A Conceptual Framework for Analyz-
ing Students’ Knowledge of Programming. Journal of Research on Computing in
Education 29, 3 (1997), 276-297. https://doi.org/10.1080/08886504.1997.10782199
Jeroen J. G. Van Merriénboer. 1990. Strategies for Programming Instruc-
tion in High School: Program Completion vs. Program Generation. Jour-
nal of Educational Computing Research 6, 3 (1990), 265-285. https://doi.org/
10.2190/4NK5-17L7-TWQV-1EHL arXiv:https://doi.org/10.2190/4NK5-17L7-
TWQV-1EHL

Claudio Mirolo. 2010. Learning (Through) Recursion: A Multidimensional
Analysis of the Competences Achieved by CS1 Students. In Proceedings of
the Fifteenth Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’10). ACM, New York, NY, USA, 160-164. https:
//doi.org/10.1145/1822090.1822136

Claudio Mirolo. 2012. Is Iteration Really Easier to Learn Than Recursion for
CS1 Students?. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research (ICER °12). ACM, New York, NY,
USA, 99-104. https://doi.org/10.1145/2361276.2361296

https://doi.org/10.1145/382204.382524
https://doi.org/10.1145/3304221.3319755
https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/1089786.1089799
https://doi.org/10.1145/1595453.1595486
https://doi.org/10.1145/2839509.2844556
https://doi.org/10.1145/2361276.2361300
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1145/3159450.3159499
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/3304221.3319745
https://doi.org/10.1007/978-94-007-3940-6
http://dl.acm.org/citation.cfm?id=858403.858416
https://doi.org/10.3102/0013189X014005014
https://doi.org/10.3102/0013189X014005014
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/572139.572181
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.2190/4NK5-17L7-TWQV-1EHL
https://doi.org/10.2190/4NK5-17L7-TWQV-1EHL
http://arxiv.org/abs/https://doi.org/10.2190/4NK5-17L7-TWQV-1EHL
http://arxiv.org/abs/https://doi.org/10.2190/4NK5-17L7-TWQV-1EHL
https://doi.org/10.1145/1822090.1822136
https://doi.org/10.1145/1822090.1822136
https://doi.org/10.1145/2361276.2361296

(67]

(68

=
=

[70

(71

[73

[74

[75

<
S

[77

[78

[79

(80

(81

(82]

(83]

(84]

(85]

(86]

Claudio Mirolo and Cruz Izu. 2019. An Exploration of Novice Programmers’
Comprehension of Conditionals in Imperative and Functional Programming.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE '19). ACM, New York, NY, USA, 436-442.
https://doi.org/10.1145/3304221.3319746

Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented instruc-
tion and its influence on problem decomposition and solution construction. In
ITiCSE ’07: Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education. ACM, New York, NY, USA, 151-155.
https://doi.org/10.1145/1268784.1268830

Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ‘Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (SIGCSE °12). ACM, New
York, USA, 385-390. https://doi.org/10.1145/2157136.2157249

Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER °17). ACM, New York, NY, USA, 2-11. https://doi.org/10.1145/
3105726.3106178

Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication,
Validation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER °16). ACM, New York, NY, USA, 93-101. https://doi.org/10.1145/
2960310.2960316

Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In ACE "06: Proceedings
of the 8th Austalian conference on Computing education. Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 157-163.

Nancy Pennington. 1987. Comprehension Strategies in Programming. In Empir-
ical Studies of Programmers: Second Workshop, Gary M. Olson, Sylvia Sheppard,
and Elliot Soloway (Eds.). Ablex Publishing Corp., Norwood, NJ, USA, 100-113.
Viera K. Proulx. 2000. Programming Patterns and Design Patterns in the In-
troductory Computer Science Course. In Proceedings of the Thirty-first SIGCSE
Technical Symposium on Computer Science Education (SIGCSE *00). ACM, New
York, NY, USA, 80-84. https://doi.org/10.1145/330908.331819

Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-Frangois
Bonnefon, Cynthia Breazeal, Jacob W Crandall, Nicholas A Christakis, Iain D
Couzin, Matthew O Jackson, et al. 2019. Machine behaviour. Nature 568, 7753
(2019), 477.

Kathryn M. Rich, T. Andrew Binkowski, Carla Strickland, and Diana Franklin.
2018. Decomposition: A K-8 Computational Thinking Learning Trajectory. In
Proceedings of the 2018 ACM Conference on International Computing Education
Research (ICER °18). ACM, New York, NY, USA, 124-132. https://doi.org/10.1145/
3230977.3230979

Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, and Diana Franklin.
2019. A K-8 Debugging Learning Trajectory Derived from Research Lit-
erature. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, New York, NY, USA, 745-751. https:
//doi.org/10.1145/3287324.3287396

Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and Di-
ana Franklin. 2017. K-8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals. In Proceedings of the 2017 ACM Conference
on International Computing Education Research (ICER ’17). ACM, New York, NY,
USA, 182-190. https://doi.org/10.1145/3105726.3106166

Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389-414.

Robert S Rist. 1995. Program structure and design. Cognitive Science 19, 4 (1995),
507-561.

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer Science Education
13, 2 (2003), 137-172.

Janine Rogalski and Renan Samurcay. 1990. Acquisition of programming knowl-
edge and skills. In Psychology of programming, J.-M. Hoc (Ed.). Academic Press.
Mara Saeli. 2012. Teaching programming for secondary school: a pedagogical
content knowledge based approach. Ph.D. Dissertation. Eindhoven University of
Technology, Eindhoven, The Netherlands.

Jorma Sajaniemi, Mordechai Ben-Ari, Pauli Byckling, Petri Gerdt, and Yevgeniya
Kulikova. 2006. Roles of Variables in Three Programming Paradigms. Computer
Science Education 16, 4 (December 2006), 261-279.

Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using Roles of
Variables in Teaching Introductory Programming. Computer Science Education
15, 1 (2005), 59-82. https://doi.org/10.1080/08993400500056563

Ian Sanders, Vashti Galpin, and Tina Gotschi. 2006. Mental models of recursion
revisited. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITICSE "06). ACM, New York, USA,
138-142.

[87]

[88

[89

[90

[o1

[92

[93

[94

[95]

[96

[97

[98

[99]

[100

[101

[102

[103

[104

[105

[106

[107

[108

Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patit-
sas, and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repos-
itory of Multiple-choice CS1 and CS2 Questions. In Proceedings of the ITiCSE
Working Group Reports Conference on Innovation and Technology in Computer
Science Education-working Group Reports (ITiCSE -WGR ’13). ACM, New York,
NY, USA, 33-52. https://doi.org/10.1145/2543882.2543885

Wolfgang Schnotz and Christian Kiirschner. 2007. A reconsideration of cognitive
load theory. Educational psychology review 19, 4 (2007), 469-508.

Tamarisk Lurlyn Scholtz and Ian Sanders. 2010. Mental Models of Recur-
sion: Investigating Students’ Understanding of Recursion. In Proceedings of
the Fifteenth Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE '10). ACM, New York, NY, USA, 103-107. https:
//doi.org/10.1145/1822090.1822120

Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension As a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (ICER "08).
ACM, New York, NY, USA, 149-160. https://doi.org/10.1145/1404520.1404535
Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H.
Paterson. 2010. An Introduction to Program Comprehension for Computer
Science Educators. In Proceedings of the 2010 ITiCSE Working Group Reports
(ITiCSE-WGR ’10). ACM, New York, NY, USA, 65-86. https://doi.org/10.1145/
1971681.1971687

Linda Seiter and Brendan Foreman. 2013. Modeling the Learning Progressions of
Computational Thinking of Primary Grade Students. In Proceedings of the Ninth
Annual International ACM Conference on International Computing Education
Research (ICER ’13). ACM, New York, NY, USA, 59-66. https://doi.org/10.1145/
2493394.2493403

Sue Sentance and Jane Waite. 2017. PRIMM: Exploring Pedagogical Approaches
for Teaching Text-based Programming in School (WiPSCE ’17). ACM, 113-114.
https://doi.org/10.1145/3137065.3137084

Amal Shargabi, Syed Aljunid, Muthukkaruppanan Annamalai, Shuhaida M
Shuhidan, and Abdullah M Zin. 2015. Tasks that can improve novices’ program
comprehension. In 2015 IEEE Conference on e-Learning, e-Management and e-
Services (IC3e). 32-37. https://doi.org/10.1109/IC3e.2015.7403482

Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, Errol Thompson,
and Jacqueline L. Whalley. 2008. Going SOLO to Assess Novice Programmers.
In Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE '08). ACM, New York, NY, USA, 209-213.
Lee S. Shulman. 1986. Those who understand: Knowledge growth in teach-
ing. Educational Researcher 15, 2 (1986), 4-14. https://doi.org/10.3102/
0013189X015002004

Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850-858. https://doi.org/
10.1145/6592.6594

Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. 1983. Cognitive strategies and
looping constructs: an empirical study. Commun. ACM 26, 11 (Nov. 1983),
853-860. https://doi.org/10.1145/182.358436

Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 8:1-8:31 pages. https://doi.org/
10.1145/2483710.2483713

James C Spohrer and Elliot Soloway. 1986. Novice mistakes: Are the folk wisdoms
correct? Commun. ACM 29, 7 (1986), 624-632.

James C Spohrer, Elliot Soloway, and Edgar Pope. 1985. A goal/plan analysis of
buggy Pascal programs. Human-Computer Interaction 1, 2 (1985), 163-207.
Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. 2012. Code Com-
prehension Problems As Learning Events. In Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’12). ACM, New York, NY, USA, 81-86. https://doi.org/10.1145/2325296.2325319
Donna Teague and Raymond Lister. 2014. Programming: Reading, Writing and
Reversing. In Proceedings of the 2014 Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’14). ACM, New York, USA, 285-290.
https://doi.org/10.1145/2591708.2591712

Donna Teague, Raymond Lister, and Alireza Ahadi. 2015. Mired in the Web:
Vignettes from Charlotte and Other Novice Programmers.. In ACE. 165-174.
Errol Thompson, Jacqueline Whalley, Raymond Lister, and Beth Simon. 2006.
Code Classification as Learning and Assessment Exercise for Novice Program-
mers. In Proceedings of the 19th Annual Conference of the National Advisory Com-
mittee on Computing Qualifications, S. Mann and N. Bridgeman (Eds.). NACCQ
in cooperation with ACM SIGCSE, 291-298.

Michael Thuné and Anna Eckerdal. 2009. Variation theory applied to students’
conceptions of computer programming. European Journal of Engineering Educa-
tion 34, 4 (2009), 339-347. https://doi.org/10.1080/03043790902989374

Niko Tinbergen. 1963. On aims and methods of ethology. Zeitschrift fir tierpsy-
chologie 20, 4 (1963), 410-433.

Yasushi Umeda and Tetsuo Tomiyama. 1997. Functional reasoning in design.
IEEE expert 12, 2 (1997), 42-48.

https://doi.org/10.1145/3304221.3319746
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/330908.331819
https://doi.org/10.1145/3230977.3230979
https://doi.org/10.1145/3230977.3230979
https://doi.org/10.1145/3287324.3287396
https://doi.org/10.1145/3287324.3287396
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.1080/08993400500056563
https://doi.org/10.1145/2543882.2543885
https://doi.org/10.1145/1822090.1822120
https://doi.org/10.1145/1822090.1822120
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1145/3137065.3137084
https://doi.org/10.1109/IC3e.2015.7403482
https://doi.org/10.3102/0013189X015002004
https://doi.org/10.3102/0013189X015002004
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/182.358436
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2325296.2325319
https://doi.org/10.1145/2591708.2591712
https://doi.org/10.1080/03043790902989374

[109

A. Marie Vans, Anneliese von Mayrhauser, and Gabriel Somlo. 1999. Program
understanding behavior during corrective maintenance of large-scale software.
International Journal of Human-Computer Studies 51, 1 (1999), 31-70. https:
//doi.org/10.1006/ijhc.1999.0268

Eugene Wallingford. 1996. Toward a first course based on object-oriented
patterns. ACM SIGCSE Bulletin 28, 1 (1996), 27-31.

David Weintrop, Heather Killen, Talal Munzar, and Baker Franke. 2019. Block-
based Comprehension: Exploring and Explaining Student Outcomes from a Read-
only Block-based Exam. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE °19). ACM, New York, NY, USA, 1218-1224.
https://doi.org/10.1145/3287324.3287348

Jacqueline Whalley and Nadia Kasto. 2013. Revisiting Models of Human Con-
ceptualisation in the Context of a Programming Examination. In Proceedings of
the Fifteenth Australasian Computing Education Conference - Volume 136 (ACE
’13). Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 67-76.
http://dl.acm.org/citation.cfm?id=2667199.2667207

[113] Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Rob-
bins, P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of
Reading and Comprehension Skills in Novice Programmers, Using the Bloom
and SOLO Taxonomies. In Proceedings of the 8th Australasian Conference on
Computing Education - Volume 52 (ACE °06). Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 243-252. http://dl.acm.org/citation.cfm?id=
1151869.1151901

Richard T. White and Richard F. Gunstone. 1992. Probing understanding. Falmer,
London and New York.

Susan Wiedenbeck and Vennila Ramaligan. 1999. Novice comprehension of small
programs written in the procedural and object-oriented styles. International
Journal of Human-Computer Studies 51, 1 (1999), 71 — 87. https://doi.org/10.
1006/1jhc.1999.0269

Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253. https://doi.org/10.1080/08993408.2019.1565235
Benjamin Xie, Greg L. Nelson, and Andrew J. Ko. 2018. An Explicit Strategy
to Scaffold Novice Program Tracing. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE '18). ACM, New York, NY,
USA, 344-349. https://doi.org/10.1145/3159450.3159527

[110

[111]

[112]

[114

[115

[116

[117

O PN U AR W N =

R
N oA W RO

APPENDIX - ADDITIONAL BACKGROUND
KNOWLEDGE

A PLANS AND PLAN COMPOSITION

This appendix describes plans and plan-composition strategies for
the unfamiliar reader using an example.
Consider the following problem:

Write a program that outputs the number of occur-
rences of the largest value in a given array of temper-
ature measurements (in degrees Celsius).

Solving this problem requires three general tasks:

(1) determining the maximum.
(2) determining its frequency in an array.
(3) printing the result.

These three goals appear in many problems, and expert pro-
grammers have standard approaches (plans) in their repertoire for
solving these [97]: 1) the Maximum plan, 2) Count plan, and 3)
Output plan [24].

Thus, a solution can be written by combining those 3 plans The
problem at hand can be solved by abutting the plans, i.e. merely
executing the three in sequential order. In terms of tailoring, the
programmer needs to ensure that the maximum is initialized to the
first value in the array, and not zero for example because the values
may all be negative values. In Java the result could look as shown
in Listing 2.

int[] 1 = {20,24,23,35,30,35};
int b=1[0];
for(int i=1; i<l.length; i++){
if(1[0i1>b){
b=1[i];

3
3
int a=0;
for(int i=1; i<l.length; i++){

if(1[0il==b){

a++;

System.out.println(a);
Listing 2: Abutment of plans: Maximum & Count & Output

The complexity of this approach can be measured by the number
of components and the way they are connected, relative to the
knowledge the student is expected to have at that particular moment
[30, 42].

If we give the problem above to students towards the end of a
CS1 course in which the three elementary plans (Maximum plan,
Count plan, and Output plan) have already been taught, using the
SOLO taxonomy [42] we will consider such elementary plans to
reside at the uni-structural level . The abutment of two or more
elementary plans is considered to coincide with a multi-structural
level of understanding, as concatenation is the simplest way to

https://doi.org/10.1006/ijhc.1999.0268
https://doi.org/10.1006/ijhc.1999.0268
https://doi.org/10.1145/3287324.3287348
http://dl.acm.org/citation.cfm?id=2667199.2667207
http://dl.acm.org/citation.cfm?id=1151869.1151901
http://dl.acm.org/citation.cfm?id=1151869.1151901
https://doi.org/10.1006/ijhc.1999.0269
https://doi.org/10.1006/ijhc.1999.0269
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3159450.3159527

[
= O 0 00NN U R W N

= e
R W N

compose plans or lines. Thus as answer such as that shown in fig-
ure 2 is measured to be at the multi-structural level. In this solution,
one can recognize the code ’chunk’ for determining the maximum
value followed by code block for determining the frequency of that
value, and then outputting the value. Recognizing the chunks and
abstracting from the details allows a reader to understand the mean-
ing of the code as an entity (i.e. ’see the trees through the forest”)
and construct a general description of its purpose as a whole.

The same goal can also be achieved by merging the two plans,
since the data will be passed through only once. In Java the re-
sult could look as shown in Listing 3. In this case, the Maximum
and Count plans have been merged. As an effect, recognizing the
constituent plans becomes more difficult. The reader must search
for beacons in the code, and relate these to the knowledge about
individual plans in his or her repertoire. Furthermore, it requires
an understanding about how plans can be merged in general.

The code shown in figure 3 will be classified as relational because
merging 2 or more elementary plans is non trivial and requires a
deeper understanding on how the plan fit together.

int[] 1 = {20,24,23,35,30,35};
int a=1;
int b=1[0];
for(int i=1; i<l.length; i++){
if(1[il>b){
b=1[i1];
a=1;
} else {
if (1[i1==b){
a++;
}
3
3
System.out.println(a);
3

Listing 3: Merging of plans: Maximum & Count abutted by
Output

B INTERVIEW PROTOCOL

At the end of an introductory course, students are expected to have
learned the rudiments about the nature, scope, general features of
the language and basic methodologies of programming. It is then
assumed that they have gained a more comprehensive understand-
ing of small-scale programs, i.e., that they are able both to “read” —
can interpret — as well as to “write” — design and develop — short
chunks of code aimed at achieving a particular task. However, it
is often less clear what the instructors exactly mean by program
comprehension at an introductory level, and to what extent this
skill is taught and assessed explicitly, not simply taken for granted
on the basis of the accomplishment of some related programming
activities.

The purpose of this interview is to explore your personal per-
spective about program comprehension at an introductory level,
your teaching practice in order to develop program comprehension,
and the major difficulties/misconceptions that may prevent stu-
dents, according to your experience, from gaining a comprehensive
understanding of small-scale programs.

Interview questions

A. Personal information

F/M

Country?

Institution?

What is your academic background?

How long have you been teaching programming?

B. Teaching context

- Instruction level / Student age - select ages as appropriate
(pre-tertiary instruction)

primary school: 567891011

middle school: 111213 14

high school: 141516 17 18 19

university : CS1 CS2 (instruction level)
- Are your students specialising in a computing field? (univer-
sity)
- How many hours per year are your students taught (attending
a class) on computing topics?
- What programming language(s)/environment(s) do you use?

- Why did you choose this/these language(s)/environment(s)?

C. Open questions

C1. What Program Comprehension (ProgComp) means
to you and your students

- Explain in a few words what the term“program comprehen-
sion’ means to you

- What concepts and skills do you want your students to learn
in connection with program comprehension?

-What are the major difficulties/misconceptions that conceiv-
ably prevent your students from comprehending small pro-
grams? Can you explain such difficulties/misconceptions?

C2. How to teach ProgComp

- Do you explicitly teach program comprehension? If so, could
you briefly list and describe your instructional strategies to
enhance students’ program comprehension?

- Do you use any hands-on teaching activities that cover pro-
gram comprehension?
If yes, a) describe shortly an example of a task you assign to
enhance program comprehension
b) mention briefly reasons for assigning this task to
enhance program comprehension
If no, briefly explain the reasons why you choose not to (limited
time, embedded on examples, other)

C3 How to assess ProgComp

- Briefly describe what aspects of program comprehension you
include in your assessment

- Discuss how the assessment is done (when/how/how much
weight etc)

C4. Do you have any other suggestions to improve stu-
dents’ program comprehension?

C TEMPLATE TO DESCRIBE PROGRAM COMPREHENSION ACTIVITIES

Name of activity

Identifying Expressions

Block Model (trajectory)

AT (atomic, text surface)

Pre-requisite CS concept knowledge
(What must they already know about
CS concepts?)

Literals, variables, operators
(might also include function calls, collections, ...)

Pre-requisite PC skills

(What must they already know how to
do re: Program comprehension
skills?)

none

What instructor provides

Sample code, definition of expression, several examples

What student is asked to do

Read through the sample code and highlight or circle each
expression (perhaps using different colors)

What new thing(s) should students
know or be able to do after this
exercise? (learning outcomes)

Recognize that expressions evaluate to a value, may be
simple or compound, may evaluate to different types of
values, may appear in different elements of the code (on
RHS of assignment but not left, in conditional statements,
in iterative statements, as parameters to functions, etc.)

Social

Students may work in pairs to stimulate engagement and
equalize / promote sharing of prior CS concepts

Engagement level (ICAP) (Chi 2014)

I - Interactive if group discussion as described above
follows the activity (else C- Constructive)

Notes:

Suggested to follow with breakout groups, then whole class
discussion ;

Was xyz on line X an expression? Why or why not?

Where can expressions appear? On the RHS of an
assignment statement? On the LHS of an assignment
statement? |Is a literal an expression? Does a function call
evaluate to an expression? Is a single value an
expression? Does an assignment statement evaluate to a
value? Is that an expression?

Do expressions occur in for loops? While loops?
Conditional statements?

NOTE: the code sample or samples must support all of
these variations in order to address these questions, and
should be ordered appropriately

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Program Comprehension Overview
	2.2 Characterisation of Programming Knowledge
	2.3 Use of Abstraction in Program Comprehension
	2.4 Assessment of Program Comprehension
	2.5 Fostering Program Comprehension

	3 The Block Model
	3.1 Knowledge Dualities in the Block Model
	3.2 Using the Block Model to analyse programming tasks

	4 Teachers' views of Program Comprehension
	4.1 Methodology
	4.2 Teachers' views of Program Comprehension
	4.3 Learning objectives linked to ProgComp
	4.4 Teachers views mapped into the BM

	5 Collection and classification of ProgComp tasks
	5.1 Methodology
	5.2 Text Surface Tasks
	5.3 Program Execution Tasks
	5.4 Function or Purpose Tasks
	5.5 Towards a repository of Learning Activities

	6 Moving from Single Tasks to Learning trajectories
	6.1 Methodology
	6.2 Using the BM to develop a trajectory
	6.3 Linking WG Outcomes to Practitioners' Views

	7 Conclusions and future work
	References
	A Plans and plan composition
	B Interview protocol
	C Template to Describe Program Comprehension Activities

