831 research outputs found

    SO(3) Gauge Symmetry and Neutrino-Lepton Flavor Physics

    Full text link
    Based on the SO(3) gauge symmetry for three family leptons and general see-saw mechanism, we present a simple scheme that allows three nearly degenerate Majorana neutrino masses needed for hot dark matter. The vacuum structure of the spontaneous SO(3) symmetry breaking can automatically lead to a maximal CP-violating phase. Thus the current neutrino data on both the atmospheric neutrino anomaly and solar neutrino deficit can be accounted for via maximal mixings without conflict with the current data on the neutrinoless double beta decay. The model also allows rich interesting phenomena on lepton flavor violations.Comment: 10 pages, Revtex, no figures, minor changes and references added, the version to appear in Phys. Rev.

    Resonant transmission through an open quantum dot

    Full text link
    We have measured the low-temperature transport properties of a quantum dot formed in a one-dimensional channel. In zero magnetic field this device shows quantized ballistic conductance plateaus with resonant tunneling peaks in each transition region between plateaus. Studies of this structure as a function of applied perpendicular magnetic field and source-drain bias indicate that resonant structure deriving from tightly bound states is split by Coulomb charging at zero magnetic field.Comment: To be published in Phys. Rev. B (1997). 8 LaTex pages with 5 figure

    Hole concentration and phonon renormalization in Ca-doped YBa_2Cu_3O_y (6.76 < y < 7.00)

    Full text link
    In order to access the overdoped regime of the YBa_2Cu_3O_y phase diagram, 2% Ca is substituted for Y in YBa_2Cu_3O_y (y = 7.00,6.93,6.88,6.76). Raman scattering studies have been carried out on these four single crystals. Measurements of the superconductivity-induced renormalization in frequency (Delta \omega) and linewidth (\Delta 2\gamma) of the 340 cm^{-1} B_{1g} phonon demonstrate that the magnitude of the renormalization is directly related to the hole concentration (p), and not simply the oxygen content. The changes in \Delta \omega with p imply that the superconducting gap (\Delta_{max}) decreases monotonically with increasing hole concentration in the overdoped regime, and \Delta \omega falls to zero in the underdoped regime. The linewidth renormalization \Delta 2\gamma is negative in the underdoped regime, crossing over at optimal doping to a positive value in the overdoped state.Comment: 18 pages; 5 figures; submitted to Phys. Rev. B Oct. 24, 2002 (BX8292

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore