677 research outputs found

    The role of point-like topological excitations at criticality: from vortices to global monopoles

    Get PDF
    We determine the detailed thermodynamic behavior of vortices in the O(2) scalar model in 2D and of global monopoles in the O(3) model in 3D. We construct new numerical techniques, based on cluster decomposition algorithms, to analyze the point defect configurations. We find that these criteria produce results for the Kosterlitz-Thouless temperature in agreement with a topological transition between a polarizable insulator and a conductor, at which free topological charges appear in the system. For global monopoles we find no pair unbinding transition. Instead a transition to a dense state where pairs are no longer distinguishable occurs at T<Tc, without leading to long range disorder. We produce both extensive numerical evidence of this behavior as well as a semi-analytic treatment of the partition function for defects. General expectations for N=D>3 are drawn, based on the observed behavior.Comment: 14 pages, REVTEX, 13 eps figure

    Ensembles of ecosystem service models can improve accuracy and indicate uncertainty

    Get PDF
    Many ecosystem services (ES) models exist to support sustainable development decisions. However, most ES studies use only a single modelling framework and, because of a lack of validation data, rarely assess model accuracy for the study area. In line with other research themes which have high model uncertainty, such as climate change, ensembles of ES models may better serve decision-makers by providing more robust and accurate estimates, as well as provide indications of uncertainty when validation data are not available. To illustrate the benefits of an ensemble approach, we highlight the variation between alternative models, demonstrating that there are large geographic regions where decisions based on individual models are not robust. We test if ensembles are more accurate by comparing the ensemble accuracy of multiple models for six ES against validation data across sub-Saharan Africa with the accuracy of individual models. We find that ensembles are better predictors of ES, being 5.0 6.1% more accurate than individual models. We also find that the uncertainty (i.e. variation among constituent models) of the model ensemble is negatively correlated with accuracy and so can be used as a proxy for accuracy when validation is not possible (e.g. in data-deficient areas or when developing scenarios). Since ensembles are more robust, accurate and convey uncertainty, we recommend that ensemble modelling should be more widely implemented within ES science to better support policy choices and implementation. © 2020 The Author

    Aneurysmal disease is associated with lower carotid intima-media thickness than occlusive arterial disease

    Get PDF
    Objective: Patients with aneurysmal and occlusive arterial disease have overlapping cardiovascular risk profiles. The question remains how atherosclerosis is related to the formation of aortic aneurysms. Common carotid artery intima-media thickness (CIMT) is an easily accessible and objective marker of early atherosclerosis. The aim of the current study was to investigate whether there is a difference in atherosclerotic burden as measured by CIMT between patients with aneurysmal and those with occlusive arterial disease. Methods: From 2004 to 2011, the CIMT was measured using B-mode ultrasound scanning in patients undergoing vascular surgery for aortic aneurysmal or occlusive arterial disease at the Erasmus University Medical Center. Cardiovascular risk factors, comorbidities, and medication were recorded. Patients treated for combined aneurysmal and occlusive arterial disease and patients diagnosed with a genetic aneurysm syndrome were excluded. Univariable and multivariable analyses wer

    Impact of body mass index on post-thyroidectomy morbidity

    Get PDF
    BACKGROUND: The impact of obesity on total thyroidectomy (TT) morbidity (recurrent laryngeal nerve palsy and hypocalcaemia) remains largely unknown. METHODS: In a prospective study (NCT01551914), patients were divided into five groups according to their body mass index (BMI): underweight, normal weight, overweight, obese, and severely obese. Preoperative and postoperative serum calcium was measured. Recurrent laryngeal nerve (RLN) function was evaluated before discharge, and if abnormal, at 6 months. RESULTS: In total 1310 patients were included. Baseline characteristics were similar across BMI groups except for age and sex. Postoperative hypocalcaemia was more frequent in underweight compared to obese patients but the difference was not statistically significant in multivariate analysis. There was no difference between groups in terms of definitive hypocalcaemia, transient and definitive RLN palsy, and postoperative pain. CONCLUSION: Obesity does not increase intraoperative and postoperative morbidity of TT, despite a longer duration of the procedure

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    A reanalysis of Finite Temperature SU(N) Gauge Theory

    Full text link
    We revise the SU(Nc)SU(N_c), Nc=3,4,6N_c=3,4,6, lattice data on pure gauge theories at finite temperature by means of a quasi-particle approach. In particular we focus on the relation between the quasi-particle effective mass and the order of the deconfinement transition, the scaling of the interaction measure with Nc2−1N^2_c -1, the role of gluon condensate, the screening mass.Comment: 7 pages, 7 figure

    Development of one-equation transition/turbulence models

    Full text link
    This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity--transport equation for nonturbulent fluctuation growth based on that proposed by Warren and Hassan is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittency function based on the work of Dhawan and Narasimha. The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the grid-dependence of selected predictions is analyzed

    Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering

    Full text link
    Spin asymmetries of semi-inclusive cross sections for the production of positively and negatively charged hadrons have been measured in deep-inelastic scattering of polarized positrons on polarized hydrogen and 3He targets, in the kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark distributions are extracted as a function of x for up $(u+u_bar) and down (d+d_bar) flavors. The up quark polarization is positive and the down quark polarization is negative in the measured range. The polarization of the sea is compatible with zero. The first moments of the polarized quark distributions are presented. The isospin non-singlet combination Delta_q_3 is consistent with the prediction based on the Bjorken sum rule. The moments of the polarized quark distributions are compared to predictions based on SU(3)_f flavor symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version contains tables of asymmetries and correlation matri

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore