471 research outputs found

    A Methodical Approach to Scrutinize the Role of Body Mass Index in Heart Rate Increment and Recovery

    Get PDF
    OBJECTIVES Heart rate (HR) is a crucial health indicator and is also one of the health factors we need to pay explicit attention to. Body Mass Index (BMI) is considered a cofactor in heart-related issues like heart rate increment and recovery. Thus a study was conducted to determine the relationship between BMI and the rate of heart rate increment and recovery. METHODOLOGY 24 participants aged 17-20 were examined during elliptical machine training once a week continuously for three months. Their regular resting heart rate and change in heart rate during and after the elliptical workout were recorded and compared with BMI. RESULTS The HR increments were noted alongside BMI for male participants below BMI 21.13, and female participants below BMI 20.16. The heart rate increment tempo decreases alongside the increased BMI for both sexes afterwards. The heart rate recovery (HRrecovery) for male participants falls with the BMI increase to ~25 and increases thereafter. The female participants show a differing trend: HRrecovery rates increase following BMI growth till BMI ~ 20 and then decrease parabolically till the maximum BMI among female participants. The findings suggest no linear and non-significant correlation between BMI and heart rate increment or HRrecovery. The coefficient of determination is too tiny (R2 = 0.1395 for males and R2 = 0.003 for females) to indicate the causation between BMIs and HRrecovry. CONCLUSION This is the first study scrutinizing the role of body mass index on heart rate increment and heart rate recovery. Thus BMI should not be used as the cofactor or risk for heart activity or impaired functions

    Positive Feedback Regulation between Phospholipase D and Wnt Signaling Promotes Wnt-Driven Anchorage-Independent Growth of Colorectal Cancer Cells

    Get PDF
    Aberrant activation of the canonical Wnt/ÎČ-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Phopholipase D (PLD) has been implicated in progression of colorectal carcinoma However, an understanding of the targets and regulation of this important pathway remains incomplete and besides, relationship between Wnt signaling and PLD is not known.Here, we demonstrate that PLD isozymes, PLD1 and PLD2 are direct targets and positive feedback regulators of the Wnt/ÎČ-catenin signaling. Wnt3a and Wnt mimetics significantly enhanced the expression of PLDs at a transcriptional level in HCT116 colorectal cancer cells, whereas silencing of ÎČ-catenin gene expression or utilization of a dominant negative form of T cell factor-4 (TCF-4) inhibited expression of PLDs. Moreover, both PLD1 and PLD2 were highly induced in colon, liver and stomach tissues of mice after injection of LiCl, a Wnt mimetic. Wnt3a stimulated formation of the ÎČ-catenin/TCF complexes to two functional TCF-4-binding elements within the PLD2 promoter as assessed by chromatin immunoprecipitation assay. Suppressing PLD using gene silencing or selective inhibitor blocked the ability of ÎČ-catenin to transcriptionally activate PLD and other Wnt target genes by preventing formation of the ÎČ-catenin/TCF-4 complex, whereas tactics to elevate intracellular levels of phosphatidic acid, the product of PLD activity, enhanced these effects. Here we show that PLD is necessary for Wnt3a-driven invasion and anchorage-independent growth of colon cancer cells.PLD isozyme acts as a novel transcriptional target and positive feedback regulator of Wnt signaling, and then promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. We propose that therapeutic interventions targeting PLD may confer a clinical benefit in Wnt/ÎČ-catenin-driven malignancies

    An effector from the Huanglongbing-associated pathogen targets citrus proteases

    Get PDF
    The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications

    Get PDF
    [EN] Although plant expression systems used for production of therapeutic proteins have the advantage of being scalable at a low price, the downstream processing necessary to obtain pure therapeutic molecules is as expensive as for the traditional Chinese hamster ovary (CHO) platforms. However, when edible plant tissues (EPTs) are used, there is no need for exhaustive purification, because they can be delivered orally as partially purified formulations that are safe for consumption. This economic benefit is especially interesting when high doses of recombinant proteins are required throughout the treatment/prophylaxis period, as is the case for antibodies used for oral passive immunization (OPI). The secretory IgA (SIgA) antibodies, which are highly abundant in the digestive tract and mucosal secretions, and thus the first choice for OPI, have only been successfully produced in plant expression systems. Here, we cover most of the up-todate examples of EPT-produced pharmaceuticals, including two examples of SIgA aimed at oral delivery. We describe the benefits and drawbacks of delivering partially purified formulations and discuss a number of practical considerations and criteria to take into account when using plant expression systems, such as subcellular targeting, protein degradation, glycosylation patterns and downstream strategies, all crucial for improved yield, high quality and low cost of the final product.The authors would like to thank Annick Bleys for assistance with the manuscript preparation. P.J. would like to express gratitude towards the Spanish Ministry of Economy and Competiveness for her FPU fellowship and towards the International Society for Plant Molecular Farming for their generous bursaries for attending the PBVAB 2015. This work was supported by grants from Research Foundation Flanders (FWO project G0C9714N), from the European Commission (H2020-MSCA-IF-2014 Proposal 658701-ImmunoFarm) and from the Spanish Ministry of Economy and Competiveness (Plan Nacional I+D Grant BIO2013-42193R).Juarez, P.; Virdi, V.; Depicker, A.; OrzĂĄez Calatayud, DV. (2016). Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. Plant Biotechnology Journal. 14(9):1791-1799. https://doi.org/10.1111/pbi.12541S1791179914

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA Îłp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the ÎłA system of WÎłA,n=65 GeV is found to be consistent with a power-law behaviour σ(ÎłA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study.

    Get PDF
    Each additional copy of the apolipoprotein E4 (APOE4) allele is associated with a higher risk of Alzheimer's dementia, while the APOE2 allele is associated with a lower risk of Alzheimer's dementia, it is not yet known whether APOE2 homozygotes have a particularly low risk. We generated Alzheimer's dementia odds ratios and other findings in more than 5,000 clinically characterized and neuropathologically characterized Alzheimer's dementia cases and controls. APOE2/2 was associated with a low Alzheimer's dementia odds ratios compared to APOE2/3 and 3/3, and an exceptionally low odds ratio compared to APOE4/4, and the impact of APOE2 and APOE4 gene dose was significantly greater in the neuropathologically confirmed group than in more than 24,000 neuropathologically unconfirmed cases and controls. Finding and targeting the factors by which APOE and its variants influence Alzheimer's disease could have a major impact on the understanding, treatment and prevention of the disease
    • 

    corecore