735 research outputs found

    Channel Capacities for Different Antenna Arrays with Various Transmitting Angles in Tunnels

    Get PDF
    [[abstract]]This paper focuses on the research of channel capacity of multiple-input multipleoutput (MIMO) system with different transmitting angles in straight and curvy tunnels.Araytracing technique is developed to calculate channel frequency responses for tunnels, and the channel frequency response is further used to calculate corresponding channel capacity. The channel capacities are calculated based on the realistic environment. The channel capacities of MIMO long term evolution system using spatial and polar antenna arrays by different transmitting angles are computed. Numerical results show that, The channel capacity for transmitting angle at 15◦ is largest compared to the other angles in the tunnels. Moreover, the channel capacity of polar array is better than that of spatial array both in the straight and curvy tunnels. Besides, the channel capacity for the tunnels with traffic is larger than that without traffic. Finally, it isworth noting that in these cases the presentwork provides not only comparative information but also quantitative information on the performance reduction.[[notice]]補正完畢[[incitationindex]]SC

    An integrated priority-based cell attenuation model for dynamic cell sizing

    Get PDF
    A new, robust integrated priority-based cell attenuation model for dynamic cell sizing is proposed and simulated using real mobile traffic data.The proposed model is an integration of two main components; the modified virtual community – parallel genetic algorithm (VC-PGA) cell priority selection module and the evolving fuzzy neural network (EFuNN) mobile traffic prediction module.The VC-PGA module controls the number of cell attenuations by ordering the priority for the attenuation of all cells based on the level of mobile level of mobile traffic within each cell.The EFuNN module predicts the traffic volume of a particular cell by extracting and inserting meaningful rules through incremental, supervised real-time learning.The EFuNN module is placed in each cell and the output, the predicted mobile traffic volume of the particular cell, is sent to local and virtual community servers in the VC-PGA module.The VC-PGA module then assigns priorities for the size attenuation of all cells within the network, based on the predicted mobile traffic levels from the EFuNN module at each cell.The performance of the proposed module was evaluated on five adjacent cells in Selangor, Malaysia. Real-time predicted mobile traffic from the EFuNN structure was used to control the size of all the cells.Results obtained demonstrate the robustness of the integrated module in recognizing the temporal pattern of the mobile traffic and dynamically controlling the cell size in order to reduce the number of calls dropped

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    On the complexity of arithmetic secret sharing

    Get PDF
    Since the mid 2000s, asymptotically-good strongly-multiplicative linear (ramp) secret sharing schemes over a fixed finite field have turned out as a central theoretical primitive in numerous constant-communication-rate results in multi-party cryptographic scenarios, and, surprisingly, in two-party cryptography as well. Known constructions of this most powerful class of arithmetic secret sharing schemes all rely heavily on algebraic geometry (AG), i.e., on dedicated AG codes based on asymptotically good towers of algebraic function fields defined over finite fields. It is a well-known open question since the first (explicit) constructions of such schemes appeared in CRYPTO 2006 whether the use of “heavy machinery” can be avoided here. i.e., the question is whether the mere existence of such schemes can also be proved by “elementary” techniques only (say, from classical algebraic coding theory), even disregarding effective construction. So far, there is no progress. In this paper we show the theoretical result that, (1) no matter whether this open question has an affirmative answer or not, these schemes can be constructed explicitly by elementary algorithms defined in terms of basic algebraic coding theory. This pertains to all relevant operations associated to such schemes, including, notably, the generation of an instance for a given number of players n, as well as error correction in the presence of corrupt shares. We further show that (2) the algorithms are quasi-linear time (in n); this is (asymptotically) significantly more efficient than the known constructions. That said, the analysis of the mere termination of these algorithms does still rely on algebraic geometry, in the sense that it requires “blackbox application” of suitable existence results for these schemes. Our method employs a nontrivial, novel adaptation of a classical (and ubiquitous) paradigm from coding theory that enables transformation of existence results on asymptotically good codes into explicit construction of such codes via concatenation, at some constant loss in parameters achieved. In a nutshell, our generating idea is to combine a cascade of explicit but “asymptotically-bad-yet-good-enough schemes” with an asymptotically good one in such a judicious way that the latter can be selected with exponentially small number of players in that of the compound scheme. This opens the door t

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting
    corecore