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Abstract. Since the mid 2000s, asymptotically-good strongly-multi-
plicative linear (ramp) secret sharing schemes over a fixed finite field
have turned out as a central theoretical primitive in numerous constant-
communication-rate results in multi-party cryptographic scenarios, and,
surprisingly, in two-party cryptography as well.

Known constructions of this most powerful class of arithmetic secret
sharing schemes all rely heavily on algebraic geometry (AG), i.e., on
dedicated AG codes based on asymptotically good towers of algebraic
function fields defined over finite fields. It is a well-known open ques-
tion since the first (explicit) constructions of such schemes appeared in
CRYPTO 2006 whether the use of “heavy machinery” can be avoided
here. i.e., the question is whether the mere existence of such schemes
can also be proved by “elementary” techniques only (say, from classical
algebraic coding theory), even disregarding effective construction. So far,
there is no progress.

In this paper we show the theoretical result that, (1) no matter
whether this open question has an affirmative answer or not, these
schemes can be constructed explicitly by elementary algorithms defined
in terms of basic algebraic coding theory. This pertains to all relevant
operations associated to such schemes, including, notably, the genera-
tion of an instance for a given number of players n, as well as error
correction in the presence of corrupt shares. We further show that (2)
the algorithms are quasi-linear time (in n); this is (asymptotically) sig-
nificantly more efficient than the known constructions. That said, the
analysis of the mere termination of these algorithms does still rely on
algebraic geometry, in the sense that it requires “blackbox application”
of suitable existence results for these schemes.

Our method employs a nontrivial, novel adaptation of a classical (and
ubiquitous) paradigm from coding theory that enables transformation
of existence results on asymptotically good codes into explicit construc-
tion of such codes via concatenation, at some constant loss in parame-
ters achieved. In a nutshell, our generating idea is to combine a cascade
of explicit but “asymptotically-bad-yet-good-enough schemes” with an
asymptotically good one in such a judicious way that the latter can be
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selected with exponentially small number of players in that of the com-
pound scheme. This opens the door to efficient, elementary exhaustive
search.

In order to make this work, we overcome a number of nontrivial
technical hurdles. Our main handles include a novel application of the
recently introduced notion of Reverse Multiplication-Friendly Embed-
dings (RMFE) from CRYPTO 2018, as well as a novel application of a
natural variant in arithmetic secret sharing from EUROCRYPT 2008.

1 Introduction

Background

This paper deals with linear secret sharing schemes (LSSS for short) defined
over a finite field Fq, with the additional property of being strongly-multiplicative
[12]. We first briefly recall these (well-known) notions below (for precise defini-
tions, see Sect. 2). We consider LSSS with share-space dimension 1, i.e., each of
the n players is assigned a single Fq-element as a share. The dimension of the
secret-space or the size of the secret, however, is not restricted, i.e., the secret is
generally a vector in F

k
q (for some given positive integer k) instead of an element

of Fq. As a matter of terminology, we speak of an LSSS for F
k
q over Fq (on n

players).1

The linearity property means that an Fq-linear combination of “input” shar-
ings, adding shares “player-wise” (similar for scalar multiplication), results in a
correct “output” sharing where the corresponding secret is defined by taking the
same combination over the secrets of the input sharings. There is t-privacy if the
shares of any t out of n players jointly give no information about the secret and
there is r-reconstruction if the shares of any r out of n players jointly always
determine the secret uniquely, as follows: for each set of r-players, there is an
Fq-linear map that, when applied to the vector consisting of their shares, always
gives the secret,

An LSSS Σ for F
k
q over Fq on n players is t-strong-multiplicative2 if there is

t-privacy (t ≥ 1) and if “the square of the LSSS” has (n − t)-reconstruction. For
a vector (s0, s1, . . . , sn) ∈ Σ, (s1, . . . , sn) ∈ F

n
q is said to be a full share-vector

with secret s0 ∈ F
k
q . The latter is equivalent to the statement that, if x,x′ ∈ F

n
q

are full share-vectors with respective secrets s0, s′
0 ∈ F

k
q , then, for each set A of

n − t players, the “player-wise” product xA ∗ x′
A ∈ F

n−t
q of the respective share-

vectors xA,x′
A held by A determines the coordinate-wise product s0 ∗ s′

0 ∈ F
k
q of

the secrets uniquely in that, for each such A, there exists an Fq-linear map φ(A)

such that φ(A)(xA ∗ x′
A) = s0 ∗ s′

0 always holds.3 We may also refer to the t as
1 Secret space can be easily adapted to F

k
Q where FQ is an extension field of Fq [6].

2 In [13]. A t-strongly multiplicative LSSS on n players for Fk
q over Fq is also called an

(n, t, 2, t)-arithmetic secret sharing scheme with secret space F
k
q and share space Fq.

3 The coordinate-wise product of the secrets being thus uniquely determined does not
imply that corresponding maps are linear. (See [7]) As linearity is essential in many
applications, it is not sufficient to simply require this uniqueness.
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the adversary-parameter. We note that t-strong-multiplicativity trivially implies
(n − t)-reconstruction. Also, it implies an effective algorithm for recovering the
secret from n shares even if at most t of them are corrupted, by a generalization
of the Berlekamp-Welch algorithm (see [13]).

We note that the classical application of these schemes is in information-
theoretic multiparty computation (MPC) perfectly secure against an active
adversary (in [1] and follow-up work based on Shamir’s secret sharing scheme,
abstracted and generalized in [12] for linear secret sharing). Although the Shamir
secret sharing scheme satisfies the t-strong-multiplicativity mentioned above, the
share size grows with the number of players, i.e., the share size of the Shamir
secret sharing scheme on n players is n log n. On the other hand, there does
exist secret sharing scheme that the share size does not grow with the number
of players. We call it asymptotically good secret sharing scheme.

For an infinite family of such schemes, with Fq fixed and n tending to infin-
ity, we say it is asymptotically good if k, t ∈ Ω(n). We emphasize that, in this
asymptotic context, there is yet another parameter of importance to some (the-
oretical) applications, namely the density (within the set of positive integers)
of the infinite sequence of player-numbers n1, n2, . . . realized by the successive
instances. Concretely, we equate this density to lim supi→∞ ni+1/ni. If this is
bounded by a constant (as is the case for known constructions), i.e., not infinity,
then we may as well assume that the family realizes any given player-number
n if it is large enough. Briefly, this is by folding the schemes and by slightly
generalizing the definitions as follows. For n ∈ (ni, ni+1) we simply give each
player an appropriate constant number of shares in the ni+1-st scheme, thereby
shrinking the length to its desired magnitude. Effectively, the share-space is now
a product over a constant number of copies of Fq, endowed with coordinate-wise
multiplication (and-addition). This will affect the adversary parameter t only by
a constant multiplicative factor (and will not affect the secret-space dimension
k). The definitions are trivially adapted to this situation. Finally, note that if
the density equals 1, then there is essentially no such loss.4

This asymptotic notion was first considered and realized in [3] in 2006,
thereby enabling an “asymptotic version” of the general MPC theorem from [1].
Since 2007, with the advent of the so-called “MPC-in-the-head paradigm” [19],
these asymptotically-good schemes have been further exposed as a central theo-
retical primitive in numerous constant communication-rate results in multi-party
cryptographic scenarios, and, surprisingly, in two-party cryptography as well.

As to the construction of these schemes, all known results [3,5,9] rely heavily
on algebraic geometry, more precisely, on dedicated algebraic geometric codes
based on good towers of algebraic function fields defined over finite fields. It is a
well-known open question since 2006 whether the use of “heavy machinery” can
be avoided here. I.e., the question is whether the mere existence of such schemes
can also be proved by “elementary” techniques only (say, from classical algebraic

4 Whenever it is deemed convenient, one may even drop the condition that n is large
enough, by inserting into the family a finite number of schemes for small player-
numbers consistent with asymptotic parameters.
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coding theory), even disregarding effective construction. So far, no progress on
this question has been reported. For a full account on history, constructions and
applications, see [13].

Our Results

In this paper we show the theoretical result that, no matter whether this open
question has an affirmative answer or not, these schemes can be constructed
explicitly by elementary algorithms defined in terms of basic algebra. This per-
tains to all relevant operations associated to such schemes: the generation of
an instance for a given number of players n, the generation of shares, the com-
putation of the linear maps associated to the strongly-multiplicative property,
as well as error correction in the presence of corrupt shares. In fact, we show
the algorithms are quasi-linear time (in n). To the best of our knowledge, the
asymptotically-good strongly-multiplicative LSSS based on algebraic geometry
code has time complexity at least quadratic [22]. The density in our construction
is minimal, i.e., it equals 1. As a contrast, the best explicit algebraic geometry
codes lead to an strongly-multiplicative LSSS over Fq with density

√
q. On the

other hand, the algebraic geometry code derived from Shimura curve achieves
density 1 but is non-constructive.

In spite of the elementary nature of the algorithms, the analysis of their mere
termination does currently rely on algebraic geometry, in that it is founded, in
part, on “blackbox use” of suitable existence results on asymptotically good
schemes. Thus. in particular, there is no paradox here. In some sense, we may
conclude that, even though algebraic geometry may be essential to the existence
of these schemes (as the state-of-the-art may seem to suggest), it is not essential
to their explicit construction.

We do note, however, that the positive adversary rate t/n we achieve is
smaller than the optimal rate achieved by known results. Namely, here we achieve
rate 1/27 instead of getting arbitrarily close to 1/3. Also, we do not achieve t-
uniformity of the shares (i.e., the additional property that, besides t-privacy,
the shares of any t players are uniformly random in F

t
q, But, for (almost) all

theoretical applications, this does not matter.
Finally, though this is somewhat besides the theoretical point we are making

here, our quasi-linear time algorithms may perhaps help to show that some of
the theoretical applications enjoy overall quasi-linear time complexity as well.
This could be interesting in its own right, but it still remains to be seen.

Overview of Our Method

A naive hope for elementary, effective (Monte-Carlo) construction would be the
following. At the core of all known constructions is the observation that it suffices
to find linear codes C over Fq such that each of the codes C, C⊥ (its dual)



448 R. Cramer et al.

and C∗2 (its square5) is asymptotically-good.6 If such codes could be shown
to be “sufficiently dense”, then an approach by selecting random codes could
potentially work. However, using the theory of quadratic forms over finite fields,
it has been shown in [8] that, over a fixed finite field Fq, a random linear code C of
length n and dimension

√
n+λ, has the property that C∗2 = F

n
q with probability

exponentially (in λ) close to 1. Thus, although C and C⊥ can be rendered
asymptotically good in this way (by Gilbert-Varshamov arguments), the code
C∗2 would be “maximally-bad” almost certainly; the powering operation on
codes is very destructive, almost always.

Instead, our method employs a nontrivial, novel adaptation of a classical
paradigm from coding theory that enables transformation of existence results
on asymptotically good codes into explicit construction of such codes via con-
catenation, at some constant loss in parameters achieved. In a nutshell, the idea
is to combine an effective construction of “asymptotically-bad-yet-good-enough
codes” with asymptotically good ones in such a judicious way that the latter can
be selected with exponentially small length in that of the compound code. This
opens the door to efficient, elementary exhaustive search. That said, the analysis
of the time-complexity of these algorithms (in fact, that there exists correct such
algorithms at all, even disregarding their actual complexity) continues to rely on
algebraic geometry. We note that this complexity is superior to that of previous
schemes. On the other hand, the adversary-rate is some small factor below the
optimal rate of 1/3 achieved by previous schemes.

The approach taken in this paper is inspired by a classical idea from coding
theory, going back to the 1960s [14]: results on the existence of asymptotically
good linear codes may be transformed into effective construction of such codes
via concatenation, incurring just a constant loss in the parameters achieved.

On a high level, this works as follows. One can take a “sufficiently good”
code defined over an extension of the target “base field” as the outer code. This
code needs not to be asymptotically good. Viewing the extension field as a vector
space over the base field, one then encodes each coordinate to a vector over the
base field through an asymptotically good code defined over the base field, the
inner code. This compound scheme is linear over the base field and its length is
the product of the lengths of the outer and inner codes.

The point is now that, if the outer code has constant rate and relative
minimum distance as a function of its length and the degree of the extension
grows very slowly with respect to its length, say logarithmically (which could be
achieved e.g. with Reed-Solomon codes), then, in order for the compound code
to be asymptotically good, it suffices that the inner code has exponentially small
length as a function of the length of the outer code. This makes it possible to
derandomize the random argument for Gilbert-Varshamov bound so as to find
a linear inner code attaining this bound in polynomial time with respect to the

5 The Fq-linear code generated by all terms of the form x ∗ y, where x, y ∈ C and
where x ∗ y is the coordinate-wise product of two vectors.

6 I.e., The finite field Fq is fixed, the length of the codes tends to infinity, and the
relative dimension and relative minimum distance are positive.
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length of the outer code [17].7 The concatenation idea that reduces the dimen-
sion of the searching space also enlightens us to look for a similar result in linear
secret sharing scheme with strong multiplication.

In order to make such a paradigm work for us here, we overcome a number
of nontrivial obstacles.

1. How to define a proper and useful concatenation for linear secret sharing
schemes with strong multiplication. The purpose of concatenation is to bring
down the field size so as to make our exhaustive search run in quasi-linear time.
Let Σ1 be an LSSS on n1 players for FQm over FQ and Σ2 be an LSSS on n2

players for FQ over Fq where FQ is an extension field of Fq. Let us call Σ1 an outer
LSSS and Σ2 an inner LSSS. The concatenation Σ1◦Σ2 of Σ1 with Σ2 is an LSSS
on n1n2 players defined as follows: (s0, z1, . . . , zn1) ∈ Σ1 ◦ Σ2 ⊆ FQm × (Fn2

q )n1

if (si, zi) ∈ Σ2 ⊆ FQ × F
n2
q for i = 1, . . . , n1 and (s0, s1, . . . , sn1) ∈ Σ1 ⊆

FQm × F
n1
Q .8 As an analogy to concatenated codes, we show that if Σ1 is a t1-

strongly-multiplicative LSSS on n1 players and Σ2 is a t2-strongly-multiplicative
LSSS on n2 players, then Σ1 ◦Σ2 is a t1t2-strongly-multiplicative LSSS on n1n2

players.
2. The exhaustive search space should be small. We first describe what we can

achieve for one concatenation. We set our outer LSSS Σ1 to be a Shamir secret
sharing scheme. The encoding and decoding time of this LSSS is quasi-linear.
Since our compound scheme is defined over a constant field, we set q = O(1)
and n2 = log Q in Σ2 defined above. Now, the search space has dimension
log Q. Since the Shamir secret sharing scheme is asymptotically-bad, the com-
pound scheme Σ1 ◦ Σ2 is not asymptotically-good strongly-multiplicative LSSS
unless Σ2 is asymptotically-good strongly-multiplicative LSSS. The existence of
asymptotically-good strongly-multiplicative LSSS is ensured by algebraic geom-
etry codes. However, to meet our elementary algorithm claim, we have to replace
the explicit construction with an exhaustive search algorithm which enumerates
every linear subspace. This can only be done in time exp(Ω(log2 Q)). Clearly,
the search space is not small enough to meet our quasi-linear time claim. We
resolve this issue by concatenating twice. Let Σ1 be an Shamir secret sharing
scheme Σ1 on O(Q) players for FQm over FQ and Σ2 be another Shamir secret
sharing scheme on O(q) players for FQ over Fq with q = O(log Q). The com-
pound scheme Σ := Σ1 ◦ Σ2 is a strongly-multiplicative LSSS for FQm over Fq.
Let Σ3 be an asymptotically-good strongly-multiplicative LSSS on O(log log Q)
players for Fq over Fp with p = O(1) which is found by an exhaustive search
and ensured by algebraic geometry codes. The final scheme Σ ◦ Σ3 turns out to
be an asymptotically-good strongly-multiplicative LSSS on O(Q log Q log log Q)
players for FQm over Fp with p = O(1). We can see that this two-rounds

7 More precisely, this random argument is applied to the Toeplitz matrix which only
has O(n) independent entries, i.e., a random linear code whose generator matrix is
a Toeplitz matrix reaches Gilbert-Varshamov bound with high probability.

8 This can be viewed as a twist of re-sharing the share in MPC protocols.
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concatenation brings down the field size so small that an exhaustive search only
runs in time complexity polynomial in log Q.

3. The dimension of secret space should be linear in the number of play-
ers. When we overcome the above two obstacles, we already obtain an
asymptotically-good strongly-multiplicative LSSS Σ ◦ Σ3 for FQm over Fp that
runs in quasi-linear time. Note that the secret space is still FQm . We are not
done yet since we claim that our LSSS has secret space F

k
p with k = Ω(Q). We

resort to a recent developed tool called reverse multiplication friendly embed-
ding (RMFE) [10] to overcome this obstacle. An RMFE is a pair of maps
(φ, ψ) with φ : F

k
q → Fqm and ψ : Fqm → F

k
q such that for any x,y ∈ F

k
q ,

x ∗ y = ψ(φ(x) · φ(y)). This RMFE keeps multiplication property and bring
down the field size at a price of constant loss in rate, i.e., the component-wise
product of two secrets x,y ∈ F

k
q are mapped to the product of two elements

φ(x), φ(y) ∈ Fqm with m = O(k). By applying RMFE to our secret space, we are
able to obtain an strongly-multiplicative LSSS with a linear-dimensional secret
space. The original paper [5] about RMFE does not take quasi-linear time and
elementary algorithm into account. To meet quasi-linear time and elementary
algorithm claim, we apply above paradigm to our RMFE as well.

4. The last obstacle is the density issue. The density issue affects the per-
formance of LSSS in the following way. Assume that we have a class of LSSSs
on the number of players n1, . . . , such that lim infi→∞

ni+1
ni

= τ . Then, we have
to use the same LSSS on the number of players between ni + 1 to ni+1. The
density issue implies that the LSSS on ni + 1 players is only 1

τ -fractionally as
good as arithmetic secret sharing schemes on ni+1. Thus, we prefer LSSS with
density 1. We observe that our compound scheme Σ ◦Σ3 can be made to satisfy
density 1 even if Σ3 has any constant density larger than 1. This is because Σ
is a concatenation of two Shamir secret sharing scheme which yields a secret
sharing scheme on any desired number of players. By exploiting this property
and carefully tuning the length of Σ so as to cope with the length of Σ3, we
manage to produce an LSSS with density 1. It is worth emphasizing that LSSS
based on algebraic geometry codes has density either significantly bigger than
1 or density 1 but non-explicit. To see this, let us first take a look at the best
constructive algebraic geometry codes derived from Garcia-Stichtenoth function
field tower. Unfortunately, the density of these algebraic geometry codes over Fq

is merely
√

q. On the other hand, there does exist families of algebraic geome-
try codes with density 1, e.g. the Shimura curve. To our best knowledge, none
of them is explicit. In conclusion, our strongly-multiplicative LSSS is explicit
and has density 1 both of which can not be simultaneously satisfied by previous
constructions.

The paper is organized as follows. In Sect. 2, we briefly recall linear secret
sharing schemes, then introduce the concatenation of linear secret sharing
schemes. In Sect. 3, we present a quasi-linear time elementary algorithm to gener-
ate an asymptotically-good strongly-multiplicative linear secret sharing schemes.
To convert the secret space from the extension field Fqm to F

k
q , we resort to

reverse multiplication friendly embedding that was recently developed in [10].
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In the appendix, we include linear secret sharing from algebraic curves and the
decoding of concatenated codes.

2 Linear Secret Sharing Schemes and Concatenation

The relation between linear secret sharing schemes and linear codes has been
well understood since the work of [20]. Further details on this relation can be
found in [5,9]. In this section, we briefly introduce strongly-multiplicative LSSS
and some related notational convention that will be used throughout this paper.

Denote by [n] the set {1, 2, . . . , n} and denote by 2[n] the set of all subsets of
[n]. Let q be a prime power and denote by Fq the finite field of q elements. For
vectors u = (u0, u1, . . . , un) and v = (u0, v1, . . . , vn) in Fqk0 × Fqk1 × · · · × Fqkn

with integers ki � 1, we define the Schur product u ∗v to be the componentwise
product of u and v, i.e., u∗v = (u0v0, u1v1, . . . , unvn). The notion Schur product
plays a crucial role in multiplicative LSSS. Although the secret space Fqk0 and
share spaces Fqi can be different, both of them are Fq-linear.

For an subset A of {0} ∪ [n], define the projection projA(u) of u at A by
(ui)i∈A. For an Fq-subspace C of Fs

qk0 ×Fqk1 × · · ·×Fqkn , we denote by C∗2 the
Fq-linear span of {b ∗ c : b, c ∈ C}. Motivated by multiplicative secret sharing
schemes, the square codes C∗2 have been extensively studied [8,21,23,24]. To
have a good multiplicative secret sharing scheme from an Fq-linear code C,
we require that the square code C∗2 and its dual code C⊥ should have large
minimum distance. That means, we need a special class of linear codes so that
we can control the dimension and minimum distance of C∗2. There are some
candidates satisfying this requirement, e.g. Reed-Solomon codes and algebraic
geometry codes.

For convenience, we require that all-one vector 1 belongs to C. If this hap-
pens, then C becomes an Fq-linear subspace of C∗2. C is said to be unitary if C
contains the all-one vector 1.

Definition 1. A q-ary linear secret sharing scheme on n players with secret
space F

s
q� , share space Fqk is an Fq-subspace C of F

s
q� × F

n
qk such that (i)

proj{0}(C) = F
s
q� ; and (ii) the map C → proj[n](C); (c0, c1, c2, . . . , cn) 
→

(c1, c2, . . . , cn) is a bijection, i.e., for any c ∈ C, proj[n](c) = 0 if and only
if c = 0. Thus, for a codeword (c0, c1, c2, . . . , cn) ∈ C, the map ρ sending
(c1, c2, . . . , cn) to c0 is well defined. We call ρ the share-to-secret map. Fur-
thermore, ci is called the i-th share and c0 is called the secret.

It can be easily shown that (i) a subset A of [n] is authorized9 if projA(c) = 0
implies projA∪{0}(c) = 0; and (ii) a subset B of [n] is unauthorized10 if for
any c0 ∈ proj0(C), there is a codeword c ∈ C such that projB(c) = 0 and
proj{0}(c) = c0. The projA plays the same role as the map πA in Definition 1
[5].

9 The shares hold by players in A can recover the secret.
10 The shares hold by players in B imply nothing about the secret.
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Definition 2. Let C ⊆ F
s
q� × F

n
qk be an LSSS.

(i) C is said to have r-reconstruction if for any subset A of [n] of size at least r
and c ∈ C, one has that projA(c) = 0 if and only if projA∪{0}(c) = 0 (note
that an LSSS on n players always has n-reconstruction).

(ii) We say that C has t-privacy if for any subset A of [n] of size at most
t and u ∈ F

s
q� , there is a codeword c ∈ C such that projA(c) = 0 and

proj{0}(c) = u.
(iii) We say that C is a t-strongly multiplicative LSSS if C has t-privacy and

C∗2 has r-reconstruction for any r � n − t (note that C is 0-strongly mul-
tiplicative if and only if C∗2 is an LSSS). In this case, t is called corruption
tolerance of C.

(iv) Let C = {Ci}∞
i=1 be a family of LSSS. Suppose that each Ci is a ti-strongly

multiplicative LSSS on ni players. If limi→∞ ni = ∞ and limi→∞ ti

ni
= τ ,

we say that C is τ -strongly multiplicative.
(v) Let C = {Ci}∞

i=1 be a family of LSSS. Suppose that each Ci has ni players.
We say C has density θ if limi→∞ ni = ∞ and lim supi→∞

ni

ni−1
� θ.

Lemma 1. Let C ⊆ F
s
q� × F

n
qk be an LSSS. Then C∗2 has t-privacy as long as

C has t-privacy.

Proof. Let c0 ∈ proj0(C∗2). Let B be a subset of [n] of size at most t. Let c =∑
λibi∗ci ∈ C∗2 with proj0(c) = c0 for some λi ∈ Fq and bi, ci ∈ C. Then there

exist ui,vi ∈ C such that projB(ui) = projB(vi) = 0 and proj0(ui) = proj0(bi),
proj0(vi) = proj0(ci). Put w =

∑
λiui ∗ vi ∈ C∗2. Then projB(w) = 0 and

proj0(w) =
∑

λiproj0(ui) ∗ proj0(vi) =
∑

λiproj0(bi) ∗ proj0(ci) = c0. The
proof is completed.

One of the key ideas of this paper is to exploit concatenation techniques which
have been widely used in coding theory. We resort to this concatenation tech-
nique to achieve quasi-linear time strongly-multiplicative LSSS. Let us briefly
describe the concatenation technique in coding theory. Let C0 ⊆ F

n0
q be a linear

code over Fq of dimension k0 and let C1 ⊆ F
n1
qk0

be an Fq-linear code of dimen-
sion k1. Fix an Fq-linear isomorphism φ from Fqk0 to C0. Then the concatenated
code C = {(φ(c1), φ(c2), . . . , φ(cn1) : (c1, c2, . . . , cn1) ∈ C1} is an Fq-linear code
of length n0n1 and dimension k1. There are various purposes in coding theory
for concatenation. For instance, one can construct long codes over small field
through long codes over large field. As for secret sharing scheme, we can also
apply this concatenation technique accordingly with some variation. One can
view this technique as re-sharing the share. The formal definition is given below.

Definition 3. Let C0 be a q-ary linear secret sharing scheme on n0 players with
secret space Fqk , share space Fq. Let C1 be a q-ary linear secret sharing scheme
on n1 players with secret space Fq� , share space Fqk . Then the concatenated
LSSS is a q-ary linear secret sharing scheme on n0n1 players with secret space
Fq� , share space given by

C = {(c0, c1, . . . , cn1) ∈ Fq� × (proj[n0](C0))n1 : (c0, ρ(c1), . . . , ρ(cn1)) ∈ C1},
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where ρ is the share-to-secret map for the LSSS C0. Then C is a subset of
Fq� × F

n0n1
q .

Remark 1. (i) Let us verify that this concatenated scheme is an LSSS with secret
space Fq� . Suppose (c0, c1, . . . , cn1) ∈ C with ci = 0 for all 1 � i � n1. Then
we have ρ(ci) = 0. This forces c0 = 0 as C1 is an LSSS. To prove that
proj{0}(C) = Fq� , we pick an arbitrary element c0 ∈ Fq� . Then there exists
a vector (c0, a1, a2, . . . , an) ∈ C1 ⊆ Fq� × F

n1
qk . As proj{0}(C0) = Fqk , there

exists ci ∈ proj[n0](C0) such that (ai, ci) ∈ C0 for all 1 � i � n1. This implies
that (c0, c1, . . . , cn1) ∈ C. Hence, proj{0}(C) = Fq� .

(ii) It is clear that the concatenated LSSS is still Fq-linear. The Fq-dimension
of C is dim(C1) + n1(dim(C0) − k). To see this, each secret α ∈ Fqk , there
are qdim(C0)−k possible ways of re-sharing. Thus, for a given a (n+1)-tuple
(c0, c1, . . . , cn1), there are qn1(dim(C0)−k) ways of re-sharing. Hence, the total
number of elements in C is qdim(C1)+n1(dim(C0)−k).

Let C be a unitary LSSS and assume that C∗2 is an LSSS. Let ρ be the
share-to-secret map of C. Then ρ can be extended to the share-to-secret map of
C∗2, i.e., the share-to-secret map ρ′ of C∗2 satisfies ρ′|C = ρ.

Definition 4. Let C be a unitary LSSS and ρ be the share-to-secret map of C.
We say ρ is multiplicative if ρ(u ∗ v) = ρ(u)ρ(v) for any u,v ∈ proj[n](C). C is
said to be multiplicative if C∗2 is an LSSS and ρ is multiplicative.

Remark 2. Whenever we say that the share-to-secret map ρ of a q-ary LSSS C
is multiplicative, the conditions that C is unitary and ρ can be extended to the
share-to-secret map of C∗2 are satisfied.

Lemma 2. Let C0 be a q-ary linear secret sharing scheme on n0 players with
secret space Fqk , share space Fq. Let C1 be a q-ary linear secret sharing scheme
on n1 players with secret space Fq� , share space Fqk . Let ρi be the share-to-secret
map of Ci for i = 0, 1. If Ci is multiplicative for i = 0, 1, then

(i) C∗2 is an Fq-subspace of the concatenated LSSS Σ of C∗2
0 with C∗2

1 , where
C is the concatenated LSSS C0 with C1, i.e., C = {(c0, c1, . . . , cn1) ∈ Fq� ×
(proj[n0](C0))n1 : (c0, ρ0(c1), . . . , ρ0(cn1)) ∈ C1}.

(ii) C is also multiplicative.

Proof. To prove Part (i), we have to show that (b0,b)∗(c0, c) = (b0c0,b∗c) ∈ Σ
for any (b0,b), (c0, c) ∈ C. This is true since

(b0c0, ρ0(b1 ∗ c1), . . . , ρ0(bn1 ∗ cn1))
= (b0c0, ρ0(b1)ρ0(c1), . . . , ρ0(bn1)ρ0(cn1)) ∈ C∗2

1 ,

and (ρ0(bi)ρ0(ci),bi ∗ ci) ∈ C∗2
0 . We conclude C∗2 is an Fq-subspace of Σ.

It remains to check that C is multiplicative. By the definition of
share-to-secret map ρ of C, for any (c0, c1, . . . , cn1) ∈ C, we have
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ρ1(ρ0(c1), . . . , ρ0(cn1)) = c0 = ρ(c1, . . . , cn1). Then, for any (b0,b), (c0, c) ∈ C
with b = (b1, . . . ,bn1) and c = (c1, . . . , cn1), we have

ρ(b ∗ c) = ρ1(ρ0(b1 ∗ c1), . . . , ρ0(bn1 ∗ cn1))
= ρ1(ρ0(b1)ρ0(c1), . . . , ρ0(bn1)ρ0(cn1))
= ρ1((ρ0(b1), . . . , ρ0(bn1)) ∗ (ρ0(c1), . . . , ρ0(cn1))
= ρ1(ρ0(b1), . . . , ρ0(bn1))ρ1(ρ0(c1), . . . , ρ0(cn1)) = ρ(b)ρ(c)

This completes the proof.

The above lemma shows that a concatenated LSSS is multiplicative as long
as both C0 and C1 are multiplicative. In fact we can further show that this
concatenated LSSS is strongly-multiplicative as long as both C0 and C1 are
strongly-multiplicative.

Lemma 3. Let C0 be a q-ary LSSS on n0 players with secret space Fqk , share
space Fq. Let C1 be a q-ary LSSS on n1 players with secret space Fq� , share space
Fqk . If Ci has ri-reconstruction and ti-privacy for i = 0, 1. Then the concatenated
LSSS C defined in Definition 3 has n0n1−(n0−r0+1)(n1−r1+1)-reconstruction
and has (t0 + 1)t1-privacy.

Furthermore, if C∗2
1 (and C∗2

0 , respectively) has r′
1 (and r′

0, respectively)-
reconstruction and the share-to-secret maps ρi of Ci are multiplicative for i =
0, 1, then C is a t-strongly multiplicative LSSS with t = min{(t0 + 1)t1, (n0 −
r′
0 + 1)(n1 − r′

1 + 1)}.
Proof. Given a codeword c in C, we can write c = (c0, c1,1, . . . , c1,n0 , c2,1, . . . ,
c2,n0 , . . . , cn1,n0) where ci = (ci,1, . . . , ci,n0) is a share-vector of C0. Let S be the
collection of indices of C, i.e., S := {0, (1, 1), . . . , (1, n0), (2, 1), . . . , (2, n0), · · · ,
(n1, 1), . . . , (n1, n0)}. Let A be a subset of S\{0} and Ai = A∩{(i, 1), . . . , (i, n0)}
for i = 1, 2, , . . . , n1. Then A is partitioned into ∪n

i=1Ai. Let Bi = {j : (i, j) ∈
Ai}. It is clear that |Bi| = |Ai| and Bi is a subset of [n0]. This gives

∑n1
i=1 |Bi| =

|A|.
If |A| � n0n1 − (n0 − r0 + 1)(n1 − r1 + 1), then there exists a subset I ⊆ [n1]

with |I| � r1 such that |Bi| � r0 for all i ∈ I. Otherwise, we have |A| ≤
n1(r0 − 1) + (n0 − r0 + 1)(r1 − 1) < n0n1 − (n0 − r0 + 1)(n1 − r1 + 1). If c =
(c0, c1, . . . , cn1) ∈ C such that projA(c) = 0, then projBi

(ci) = 0 for all i ∈ I.
As |Bi| � r0 and C0 has r0-reconstruction, we must have ρ0(projBi

(ci)) = 0.
Thus, projI(ρ0(c1), . . . , ρ0(cn1)) = 0. This implies that c0 = 0 since |I| � r1.

Now we consider the case where |A| � (t0 + 1)t1. Let J be the subset of [n1]
such that |Bj | � t0+1 if and only if j ∈ J . Then |J | � t1. Let α ∈ Fq� . We choose
a vector c = (c0, c1, . . . , cn1) ∈ C1 such that projJ(c) = 0 and proj{0}(c) = α.
For j ∈ J , let uj = 0. For j �∈ J , choose uj ∈ C0 such that ρ0(uj) = cj and
projBj

(uj) = 0. This implies that u := (α,u1, . . . ,un1) ∈ C and projA(u) = 0.
Now, we turn to furthermore part of the claim. The assumption says that

C∗2
1 and C∗2

0 has r′
1 and r′

0-reconstruction respectively. By Lemma 2, C∗2 is an
Fq-subspace of the concatenated LSSS Σ of C∗2

0 with C∗2
1 . By the first part of
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the proof, Σ has (n0n1−(n0−r′
0+1)(n1−r′

1+1))-reconstruction and hence C∗2

also has (n0n1 − (n0 − r′
0 + 1)(n1 − r′

1 + 1))-reconstruction. The desired result
follows.

Remark 3. To the best of our knowledge, no prior work considered concatenation
of two strongly-multiplicative LSSSs. Perhaps the most relevant reference is the
multiplication friendly embedding in [5]. Multiplication friendly embedding can
be viewed as a multiplicative LSSS without privacy.

3 Quasi-linear Time LSSS with Strong Multiplication

3.1 Secret Space Is the Extension Field Fqm

The parameters of LSSS based on Reed-Solomon codes and algebraic geometry
codes can be found in appendix. In general, those codes derived from algebraic
curves can be converted into a LSSS with strong multiplication. This becomes
the building block of our quasi-linear time LSSS. Our LSSS is obtained via
the concatenation of two LSSS, one based on Reed-Solomon codes and another
one based on algebraic geometry codes. The following theorem shows that the
density of our LSSS can be 1 as long as we pick an asymptotically good algebraic
geometry code as an inner code.

Theorem 1. Let q be an even power of a prime. Then for any positive real
ε ∈

(
0, 1

2 − 2√
q−1

)
and η ∈ (0, 1

2 ), there exists a family C = {Γi}∞
i=1 of τq-

strongly multiplicative q-ary LSSS with density 1, each Γi has Ni players, secret
space Fqsi and quasi-linear time (depending on ε) for share generation and secret
reconstruction, where

τq =
1
9
(1 − 2η)

(

1 − 2ε − 4√
q − 1

)

,
si

Ni
→ εη.

Proof. Let {Ci}∞
i=1 be the family of q-ary LSSS with the same ε and γ given in

Theorem 6. We can set γ = 1
3 (1 + ε + 2√

q−1 ). Note that we have ki

ki−1
→ √

q and
ni

ni−1
→ √

q. Put ti = ni − 2�γni�, ri = �γni� and α = 1√
q , λ = 1

3 (1 + η).
Consider Σij := RSki,Rij

[Nij ,Kij ]q with Nij = αqki−1 + j and Kij = �λNij�,
Rij = �ηNij� for j = 0, 1, 2, . . . , qki − αqki−1 and i � 2. Then by Lemma 2, the
concatenated LSSS of Ci with Σij is a q-ary LSSS Γij on niNij players of secret
space FqkiRij , share space Fq. By Lemmas 2, 3 and Theorem 6, it has tij-privacy
with tij = (ti +1)(Kij −Rij − 1). Furthermore, Γ ∗2

ij has rij-reconstruction with

rij = Nijni − (Nij − 2Kij + 1)(ni − 2ri + 1).

where ri = �γni�. Put τij = min{(ti+1)(Kij −Rij −1), (Nij −2Kij +1)(ni−2ri+
1)}. Due to the setting of our parameters, ti ≈ ni−2ri and Kij−Rij ≈ Nij−2Kij ,
we come to the conclusion that

rij = (Nij − 2Kij + 1)(ni − 2ri + 1),
τij

NΓij

=
τij

niNij
→ τq.
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As the secret space of Γij is FqkiRij and the number of players is niNij , we have
kiRij

niNij
→ ηε.

Now we arrange the order of Γij in the following way

Γ1,0, Γ2,0, . . . , Γ2,qk2−αqk1 , Γ3,0, . . . , Γ3,qk3−αqk2 , Γ4,0, . . . , Γ4,qk4−αqk3 , . . . . (1)

The number of players NΓij
of Γij is ni(αqki−1 + j). Thus we have, (i) for 1 �

j � qki − αqki−1

NΓi,j

NΓi,j−1

=
ni(αqki−1 + j)

ni(αqki−1 + j − 1)
= 1 +

1
αqki−1 + j − 1

→ 1,

and (ii) for i � 2

NΓ(i+1),0

NΓ
i,qki −αq

ki−1

=
ni+1αqki

niqki
=

αni+1

ni
→ 1.

By abuse of notation, we denote the ith LSSS in (1) by Γi. Let Ni be the number
of players of Γi. Then we have Ni

Ni−1
→ 1 as i tends to ∞.

Finally, we analyze time complexity for share generation and secret recon-
struction. Note that Nij � niq

ki−1 . As ki = Ωε(ni), we have ni = Oε(logq Nij).
The share generation consists of encoding of Σij which is quasi-linear in qki ,
and share generation of LSSS in Theorem 6 which is polynomial in ni. Hence,
the total time complexity of share generation is quasi-linear in the number of
players. As for secret reconstruction, by Lemma 15, a similar analysis shows that
the time complexity is also quasi-linear in the number of players. This completes
the proof.

Our concatenation idea can greatly reduce the complexity of construction,
sharing secret and reconstructing secret by letting this algebraic geometry code
to be an inner LSSS. If the number of players of this inner LSSS is small enough,
we do not even need an explicit construction of it. In fact, we can brute force
all possible generator matrix of algebraic geometry code C such that C, its
dual code C⊥ and its square code C∗2 are all asymptotically good. All we have
to acknowledge is the existence of such code. This could allow us to present an
explicit construction of strongly multiplicative LSSS based on a quasi-linear time
searching algorithm without any prior knowledge of algebraic geometry codes.

Theorem 2. Let q be an even power of a prime. Then for any positive real
ε ∈

(
0, 1

2 − 2√
q−1

)
, λ ∈ (0, 1

2 ) and η ∈ (0, 1
2 ), there exists an quasi-linear

time elementary algorithm to generate a family C of τq-strongly multiplicative
q-ary LSSS on Ni players with density 1, secret space Fqsi and quasi-linear time
(depending on ε) for share generation and secret reconstruction, where

τq =
1
27

(1 − 2η)(1 − 2λ)(1 − 2ε − 4√
q − 1

),
si

Ni
→ ηλε.
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Proof. We notice that it takes qO(n2) times to enumerate generator matrices of
all linear codes in F

n
q . For each linear code C, we check its multiplicative property

by checking minimum distance, dual distance and the distance of C∗2. We know
the existence of this linear code by algebraic geometry codes given in Sect. 3.
This algorithm must find at least one such a code. The question is now reduced
to how to make our exhaustive search algorithm run in quasi-linear time. It turns
out that if n = log log N , the running time is then sublinear in N . Moreover, the
encoding and reconstructing time is bounded by exp(O(n)) = O(log N).

To let our exhaustive search to be quasi-linear, we have to concatenate twice
instead of once. Theorem 1 says there exists a class of 1

9 (1 − 2η)(1 − 2ε − 4√
q−1 )-

strongly multiplicative q-ary LSSS Ci on ni players with secret space Fqsi and
share space Fq such that limi→∞

ni+1
ni

= 1 and si

ni
= ηε. We use this Ci to be

our new inner LSSS. Our outer LSSS is a Shamir secret sharing scheme defined
as follows. Let Dij be a Shamir secret sharing scheme on Nij players with secret
space FqλNijsi and share space Fqsi such that Nij = qsi−1 + j for j = 1, . . . , qsi −
qsi−1 . By Lemma 13, Dij is a class of (1− 2λ)-strongly multiplicative LSSS with
density 1. Then by Lemma 2 and Lemma 3, the concatenation Σij of Dij with
Ci yields a τqNijni-strongly LSSS on Nijni players with secret space FqλNijsi

and share space Fq where λNijsi

Nijni
= λsi

ni
= ληε. Moreover, Σij has density 1 as

both of the inner LSSS Ci and the outer LSSS Dij have density 1. Note that the
inner LSSS in Ci is derived from algebraic geometry code. We want to construct
it via exhaustive search instead of exploiting its mathematical structure. By
Theorem 1, the number of players in Ci is O(logq si) = O(logq logq Nij). Our
desired result follows.

Remark 4. (i) Reducing time complexity via concatenation is not a new tech-
nique for coding theorists and it can be dated back to 1966 [14]. They dis-
covered that the concatenation of codes yields a large constructive family of
asymptotically good codes. To show the existence of codes with some special
property, we usually resort to randomness argument. The concatenation idea
allows us to reduce the space of our inner code and make it possible to find
it in polynomial time. Different from the traditional randomness argument,
our existence argument depends on the result from algebraic geometry codes,
i.e., showing the existence of asymptotically-good code C, its dual C⊥ and
its square code C∗2. This extra multiplicative property creates some difficul-
ties in finding the desirable codes by concatenating only once. Instead, we
concatenate twice so as to further narrowing down the searching space.

(ii) If we abandon either quasi-linear time construction claim or elementary
algorithm claim, we only need to concatenate once. As a result, this con-
catenated LSSS is 1

9 (1 − 2λ)(1 − 2ε − 4√
q−1 )-strongly multiplicative.

3.2 Reverse Multiplication Friendly Embedding

As we have seen, the secret space of LSSS in the previous subsection is an
extension field Fqm . In order to convert Fqm to a secret space F

k
q , we need reverse

multiplication friendly embeddings (RMFE for short).
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Before introducing RMFEs, let us recall multiplication friendly embedding
that have found various applications such as complexity of multiplication in
extension fields [4], hitting set construction [18] and concatenation of LSSS [5].

Definition 5. Let q be a power of a prime and let Fq be a field of q elements,
let k,m � 1 be integers. A pair (σ, π) is called a (k,m)q-multiplication friendly
embedding (MFE for short) if σ : Fqk → F

m
q and π : Fm

q → Fqk are two Fq-linear
maps satisfying

αβ = π(σ(α) ∗ σ(β))

for all α, β ∈ Fqk . A multiplication friendly embedding (σ, π) is called unitary if
σ(1) = 1.

It is easy to verify that the map σ must be injective and σ(Fqk) is a q-ary [m, k]-
linear code with minimum distance at least k. So far, the only way to construct
(k,m)q-multiplication friendly embedding with m = O(k) is via algebraic curves
over finite fields [4]. Now we explain how multiplication friendly embeddings are
used to concatenate LSSS.

Assume that C ⊂ Fqm × F
n
qk is an LSSS and let (σ, π) be a (k,m)q-

multiplication friendly embedding. Consider the concatenation:

σ(C) = {(c0, σ(c1), σ(c2), . . . , σ(cn)) : (c0, c1, c2, . . . , cn) ∈ C}.

Then σ(C) ⊆ F
m(n+1)
q .

Lemma 4. Let (σ, π) be a unitary multiplication friendly embedding. Then σ(C)
is a multiplicative LSSS as long as C is a multiplicative LSSS.

Proof. Assume that C is a multiplicative LSSS. If (c0, c1, c2, . . . , cn) ∈ C and
(σ(c1), . . . , σ(cn)) = 0, then σ(ci) = 0 for all 1 � i � n. As σ is injective, we
have ci = 0. Hence, c0 = 0. This means that σ(c0) = 0. Thus, σ(C) is an LSSS.

Next we show that σ(C)∗2 is an LSSS. Let (b0, b1, b2, . . . , bn), (c0,
c1, c2, . . . , cn) ∈ C and σ(b1, b2, . . . , bn)∗σ(c1, c2, . . . , cn) = 0, i.e., σ(bi)∗σ(ci) =
0 for all 1 � i � n. Then we have 0 = π(σ(bi) ∗ σ(ci)) = bici. This implies that
b0c0 = 0 since C∗2 is an LSSS.

To prove multiplicativity, let ρ and ρ′ be the share-to-secret maps of C and
σ(C), respectively. Let (b0, b1, b2, . . . , bn), (c0, c1, c2, . . . , cn) ∈ C. Since C is mul-
tiplicative,

ρ((b1, b2, . . . , bn) ∗ (c1, c2, . . . , cn)) = b0c0.

On the other hand, we have

ρ′(σ(b1, b2, . . . , bn) ∗ σ(c1, c2, . . . , cn)) = b0c0 = ρ′(σ(b1, b2, . . . , bn))ρ′(σ(c1, c2, . . . , cn)).

This completes the proof.
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Remark 5. Concatenation of an LSSS via a unitary multiplication friendly
embedding does not maintain privacy although it maintains multiplitivity
because dual distance of σ(C) is destroyed. That is why we introduce our concate-
nation of LSSS given in this paper to maintains both privacy and multiplitivity
as shown in Lemmas 2 and 3.

By applying the concatenation techniques given in this paper, we are able
to bring down share size to a constant at a constant fractional loss in privacy
and reconstruction (see Lemma 3). However, our secret is still defined over the
extension field of the share space. For most applications of multiplicative secret
sharing schemes, the share space is a fixed finite field Fq and the secret space
is desirably F

k
q for some integer k � 1. We make use of reverse multiplication

friendly embedding to convert the secret space from the extension field Fqm to
F

k
q while still maintaining strong multiplitivity.

Let us first give a formal definition of RMFE.

Definition 6. Let q be a power of a prime and let Fq be a field of q elements,
let k,m � 1 be integers. A pair (φ, ψ) is called an (k,m)q-reverse multiplication
friendly embedding if φ : Fk

q → Fqm and ψ : Fqm → F
k
q are two Fq-linear maps

satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ F
k
q .

The definition of RMFE was first proposed in [10]. Thanks to this technique,
the authors managed to bring down the amortized complexity of communication
complexity from O(n log n) to O(n) for Shamir-based MPC protocols over any
finite field. The key observation is that the classic threshold MPC protocols
requires large field to implement the hyper-invertible matrix technique and the
threshold secret sharing scheme. Therefore, even faced with MPC protocol over
binary field, one has to choose an extension field for its share while the secret
is still restricted to the binary field, a subfield of its secret space. This causes
another Ω(log n) overhead. In fact, the authors in [10] noticed that such overhead
can be amortized away if one can convert the extension field of the secret space
into a vector space so that it is possible to implement several multiplication in
parallel via RMFE.

In this work, we need RMFE for a different purpose, namely, we convert the
extension field Fqm of the secret space into a vector space F

k
q via RMFE while

maintaining strong multiplicitivity.

Lemma 5. If (φ, ψ) is a (k,m)q-RMFE, then φ is injective and m � 2k − 1.

Proof. Let x,y ∈ F
k
q such that φ(x) = φ(y). Let 1 ∈ F

k
q be the all-one vector.

Then we have

x = 1 ∗ x = ψ(φ(1)φ(x)) = ψ(φ(1)φ(y)) = 1 ∗ y = y.

This shows the injectivity of φ.
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To show the second claim, let us show that ψ is surjective. For any x ∈ F
k
q , we

have ψ(φ(1)φ(x)) = 1∗x = x. This means that ψ is surjective. Let u ∈ F
k
q be the

vector (1, 0, 0, . . . , 0). Consider the set A := {x ∈ F
k
q : ψ(φ(u)φ(x)) = 0}. As

ψ(φ(u)φ(x)) = u ∗ x = (x1, 0, 0, . . . , 0), we have A = {(0, c) : c ∈ F
k−1
q }.

It is clear that φ(u)φ(A) is a subspace of the kernel of ψ. As the dimen-
sion of φ(u)φ(A) is k − 1, we have that m = dim(ker(ψ)) + dim(Im(ψ)) �
dim(φ(u)φ(A)) + k = k − 1 + k = 2k − 1.

Though we have the inequality m � 2k − 1, it was shown in [10] that, via
construction of algebraic function fields, one has m = O(k) with a small hidden
constant.

Lemma 6 (see [10]). Let F/Fq be a function field of genus g with k distinct
rational places P1, P2, . . . , Pk. Let G be a divisor of F such that supp(G) ∩
{P1, . . . , Pk} = ∅ and deg(G) � 2g − 1 + k. If there is a place R of degree
m with m > 2 deg(G), then there exists an (k,m)q-RMFE.

Let us briefly recall construction of the RMFE given in Lemma 6. Consider
the map

π : L(G) → F
k
q ; f 
→ (f(P1), . . . , f(Pk)).

Then π is surjective. Thus, we can choose a subspace V of L(G) of dimension
k such that π(V ) = F

k
q . We write by cf the vector (f(P1), . . . , f(Pk)), and by

f(R) the evaluation of f in the higher degree place R, for a function f ∈ L(2G).
We now define

φ : π(V ) = F
k
q → Fqm ; cf 
→ f(R) ∈ Fqm .

Note that the above f ∈ V is uniquely determined by cf . The map ψ can
then be defined (see the detail in [10, Lemma 6]). Thus, the time complexity of
constructing such a RMFE consists of finding a basis of L(G) and evaluation of
functions of L(G) at the place R and the rational places P1, P2, . . . , Pk.

As the algebraic geometry code associated with this function field tower can
not run in quasi-linear time, we need to apply our concatenation idea again so
as to give rise to a quasi-linear time RMFE.

Lemma 7 (see [10]). Assume that (φ1, ψ1) is an (n1, k1)qk2 -RMFE and
(φ2, ψ2) is an (n2, k2)q-RMFE. Then φ : F

n1n2
q → Fqk1k2

(x1, . . . ,xn1) 
→ (φ2(x1), . . . , φ2(xn1)) ∈ F
n1
qk2


→ φ1(φ2(x1), . . . , φ2(xn1))

and ψ : Fqk1k2 → F
n1n2
q

α 
→ ψ1(α) = (u1, . . . ,un1) ∈ F
n1
qk2


→ (ψ2(u1), . . . , ψ2(un1))

give an (n1n2, k1k2)q-RMFE.
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Lemma 8. The Reed-Solomon code leads to a (k, r)q-RMFE (φ, ψ) for all 2 ≤
r ≤ 2q and k � r/2. Furthermore, the pair (φ, ψ) can be computed in quasi-linear
time.

Proof. Apply the rational function field Fq(x) to the construction of RMFE
given in Lemma 6. Choose an irreducible polynomial R of Fq[x] of degree r and k
distinct elements α1, α2, . . . , αk of Fq. Then it turns out that the codes are Reed-
Solomon codes and hence (φ, ψ) can be computed in time O(k log2 k log log k)
(see [2]).

By applying the Garcia-Stichtenoth tower to the construction of the RMFE
given in Lemma 6, we obtain the following result.

Lemma 9. For any integer a > 1, there exists a family of (k, a)q-RMFEs with
k → ∞ and limk→∞ a

k → 2 + 4√
q−1 that can be computed in time O(a3).

Lemma 10. For any integers a > 1 and r with 2r � qa, there exists a family of
(k, ar)q-RMFEs with k → ∞ and limk→∞ ar

k = 4 + 8√
q−1 that can be computed

in time O(a3 + r log2 r log log r).

Proof. Let (φ1, ψ1) be a (k1, r)qa -RMFE with k1 = �r/2� given in Lemma 8 and
let (φ2, ψ2) be a (k2, a)q-RMFE with a

k2
→ 2 + 4√

q−1 given in Lemma 9. By
Lemma 7, concatenation of these two RMFEs gives an (k1k2, ar)q-RMFE (φ, ψ)
with ar

k1k2
→ 4+ 8√

q−1 . Moreover, since (φ1, ψ1) is associated with Reed-Solomon

codes, it can be computed in time O(r log2 r log log r). As (φ2, ψ2) is constructed
via the Garcia-Stichtenoth tower, it can be computed in time O(a3). The overall
running time for (φ, ψ) is then upper bounded by O(a3 + r log2 r log log r).

Recall that we claim that our LSSS is generated by an elementary algorithm.
In this sense, This RMFE should also be produced by an elementary algorithm.
We again resort to exhaustive search instead of using Garcia-Stichtenoth tower
to find this RMFE. As we argue in Theorem2, we need to concatenate twice
instead of once. The first two RMFEs are associated with Reed-Solomon codes
and the third one is found by exhaustive search and guaranteed by Lemma9.
The exhaustive search consists of enumerating all linear subspaces C ⊆ F

log log n
q

and determining the distance, dual distance of C and the distance of its square
code C∗2. The first step takes time 2Ω(log log n)2 and the second step takes time
2Ω(log log n). Therefore, this exhaustive search will find the desired linear sub-
spaces in less than O(n) time. Emulating the proof of Lemma10 gives the fol-
lowing result.

Lemma 11. There exists an quasi-linear time elementary algorithm to gener-
ate a family of (ki,mi)q-RMFEs with ki → ∞ and limi→∞ mi

ki
= 8 + 16√

q−1 that

can be computed in time O(mi log2 mi log log mi).

Given a LSSS Σ with secret space Fqm , the following theorem shows how to
obtain a LSSS with secret space F

k
q by applying RMFE to the secret space of Σ.
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Theorem 3. Assume that there is a t-strongly multiplicative linear secret shar-
ing scheme C with secret space Fqm and share space Fq. If there exists a (k,m)q-
RMFE (φ, ψ), then there exists a t-strongly multiplicative linear secret sharing
scheme Σ with secret space F

k
q . Moreover, the time complexity of share genera-

tion and secret reconstruction of Σ is bounded by that of C and (φ, ψ).

Proof. Note that for any s ∈ F
k
q , φ(s) ∈ Fqm . Let

C1 = {(s, c1, . . . , cn) : s ∈ F
k
q , (φ(s), c1, . . . , cn) ∈ C}

where s is the secret and ci is the i-th share. Let us show that C1 is indeed
a LSSS with the secret space F

k
q . If (s, c1, . . . , cn) ∈ C1 with (c1, . . . , cn) = 0,

then we must have φ(s) = 0 since (φ(s), c1, . . . , cn) ∈ C. As φ is injective, this
forces that s = 0. Hence, C1 is a LSSS. To show that the secret space is F

k
q , we

choose an arbitrary s ∈ F
k
q . Then φ(s) ∈ Fqm . As the secret space of C is Fqm ,

there exists a vector (c1, . . . , cn) ∈ F
n
q such that (φ(s), c1, . . . , cn) ∈ C. Thus,

(s, c1, . . . , cn) belongs to C1.
It is clear that C1 is an Fq-LSSS as φ is a linear map and C is an Fq-LSSS. We

next show that C1 has t-privacy and C∗2
1 has (n−t)-reconstruction. The t-privacy

argument follows from the fact that C has t-privacy and {(φ(s), c1, . . . , cn) ∈ C :
s ∈ F

k
q} is a subset of C. As C is multiplicative, we can find the secret-to-

share map ρ such that for (b0,b), (c0, c) ∈ C with b = (b1, . . . , bn) and c =
(c1, . . . , cn),

ρ(b ∗ c) = ρ(b)ρ(c) = b0c0.

For any (s, c1, . . . , cn) ∈ C1, we define the share-to-secret map

ρ1(c1, . . . , cn) = ψ ◦ ρ(c1, . . . , cn) = ψ(φ(s) · φ(1)) = s.

The second step is due to the fact that C is unitary. To see that C1 is multi-
plicative, for any (x, x1, . . . , xn), (y, y1, . . . , yn) ∈ C1, we have

ρ1(x1y1, . . . , xnyn) = ψ ◦ ρ(x1y1, . . . , xnyn) = ψ(φ(x) · φ(y)) = x ∗ y.

The last step comes from the definition of RMFE. It remains to prove the
(n − t)-reconstruction of C∗2

1 . We note that (s, c1, . . . , cn) ∈ C∗2
1 indicates that

(φ(s), c1, . . . , cn) ∈ C∗2. That means we can reconstruct φ(s) from any (n − t)
shares in (c1, . . . , cn) due to the (n − t)-reconstruction property of C∗2. The
desired result follows as s = ψ ◦ φ(s).

3.3 Make the Secret Space to Be F
k
q

Putting Theorems 1, 3 and Lemma 10 together leads to our main results.

Theorem 4. Let q be any even power of prime. Then for any positive real ε ∈
(0, 1

2 − 2√
q−1 ) and η ∈ (0, 1

2 ), there exists a family C of τq-strongly multiplicative
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q-ary LSSS on Ni players with density 1, secret space F
si
q and quasi-linear time

for share generation and secret reconstruction, where

τq =
1
9
(1 − 2η)

(

1 − 2ε − 4√
q − 1

)

,
si

Ni
→ εη

(
1

4 + 8√
q−1

)

.

Proof. Note that the secret space of Γi in Theorem 1 is FqkiRij . By Lemma 10,

there exists a (si, kiRij)q-RMFE (φ, ψ) with kiRij

si
→ 1

4+ 8√
q−1

that can be

computed in time O(k3
i + Rij log2 Rij log log Rij) = O(Ni log2 Ni log log Ni) as

ki = O(log Rij). The desired result follows from Theorem 3.

By emulating the proof of Theorem2 and referring to RMFE in Lemma11,
we can also obtain a similar result without resorting to the Garcia-Stichtenoth
tower at a cost of slightly worse strong multiplicative property.

Theorem 5 (Elementary construction of LSSS with strong multiplica-
tive property). Let q be any even power of prime. Then for any positive real
ε ∈ (0, 1

2 − 2√
q−1 ) and η ∈ (0, 1

2 ), there exists a quasi-linear time elementary
algorithm to generate a family C of τq-strongly multiplicative q-ary LSSS on Ni

players with density 1, secret space F
si
q and quasi-linear time (depending on ε)

for share generation and secret reconstruction, where

τq =
1
27

(1 − 2η)(1 − 2λ)
(

1 − 2ε − 4√
q − 1

)

,
si

Ni
→ εηλ

8 + 16√
q−1

.

Acknowledgments. Ronald Cramer and Chen Yuan have been funded by the ERC-
ADG-ALGSTRONGCRYPTO project. (no. 740972). The research of Chaoping Xing
was partially supported by the Huawei-SJTU joint project.

A LSSS from Algebraic Curves

As we have seen, a concatenated LSSS consists of two LSSSs, one used as an
inner LSSS and another one used as an outer LSSS. In this section, we provide
a construction of LSSS via algebraic function fields. This gives us LSSSs with
desired property. Let us briefly recall some background on algebraic function
fields. The reader may refer to [27] for the details.

A function field F/Fq is an algebraic extension of the rational function field
Fq(x), that contains all fractions of polynomials in Fq[x]. Associated to a function
field, there is a non-negative integer g called the genus, and an infinite set of
“places” P , each having a degree deg P ∈ N. The number of places of a given
degree is finite. The places of degree 1 are called rational places. Given a function
f ∈ F and a place P , two things can happen: either f has a pole in P , or f
can be evaluated in P and the evaluation f(P ) can be seen as an element of
the field Fqdeg P . If f and g do not have a pole in P then the evaluations satisfy
the rules λ(f(P )) = (λf)(P ) (for every λ ∈ Fq), f(P ) + g(P ) = (f + g)(P ) and
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f(P ) · g(P ) = (f · g)(P ). Note that if P is a rational place (and f does not have
a pole in P ) then f(P ) ∈ Fq. The functions in F always have the same zeros
and poles up to multiplicity (called order). An important fact of the theory of
algebraic function fields is as follows: call N1(F ) the number of rational places of
F . Then over every finite field Fq, there exists an infinite family of function fields
{Fn} such that their genus gn grow with n and limn→∞ N1(Fn)/gn = cq with
cq ∈ R, cq > 0. The largest constant cq satisfying the property above is called
Ihara’s constant A(q) of Fq. It is known that 0 < A(q) ≤ √

q − 1 for every finite
field Fq. Moreover, A(q) =

√
q−1 for a square q. The result is constructive, since

explicit families of function fields attaining these values are known and given in
[15,16].

A divisor G is a formal sum of places, G =
∑

cP P , such that cP ∈ Z and
cP = 0 except for a finite number of P . We call this set of places where cP �= 0 the
support of G, denoted by supp(G). The degree of G is deg G :=

∑
cP deg P ∈ Z.

The Riemann-Roch space L(G) is the set of all functions in F with certain
prescribed poles and zeros depending on G (together with the zero function).
More precisely if G =

∑
cP P , every function f ∈ L(G) must have a zero of

order at least |cP | in the places P with cP < 0, and f can have a pole of order
at most cP in the places with cP > 0. The space L(G) is a vector space over Fq.
Its dimension is governed by certain laws (given by the so-called Riemann-Roch
theorem). A weaker version of that theorem called Riemann’s theorem states
that if deg G ≥ 2g − 1 then dimL(G) = deg(G) − g + 1. On the other hand, if
deg G < 0, then dimL(G) = 0.

Lastly, we note that, given f, g ∈ L(G), its product f ·g is in the space L(2G).

Lemma 12. Let F/Fq be a function field of genus g with n+1 distinct rational
places P∞, P1, P2, . . . , Pn. If there is a place P0 of degree k > 1 and n/2 > m �
k + 2g − 1, then there exists a q-ary LSSS C satisfying

(i) C has (m + 1)-reconstruction and (m − k − 2g + 1)-privacy.
(ii) The share-to-secret map ρ of C is multiplicative.
(iii) C∗2 has (2m + 1)-reconstruction.

Proof. Denote by FP0 the residue class field of place P0. Then we know that
FP0 � Fqk . For a function f that is regular at P0, we denote by f(P0) the residue
class of f in FP0 . Consider the map π : f ∈ L(G) 
→ (f(P0), f(P1), . . . , f(Pn)) ∈
FP0 × F

n
q � Fqk × F

n
q and define

C := Im(π) = {(f(P0), f(P1), . . . , f(Pn)) : f ∈ L(mP∞)} ⊆ FP0 × F
n
q .

For a subset A of {0} ∪ [n], we denote by πA the map

f ∈ L(G) 
→ projA(f(P0), f(P1), . . . , f(Pn)).

Since the kernel of π{0} is L(mP∞ −P0) and dimL(mP∞)−dim L(mP∞ −P0) =
k, π{0} is surjective. Hence, we have proj0(C) = Fqk .



On the Complexity of Arithmetic Secret Sharing 465

Let A be a subset of [n]. If |A| � m+1 and projA(f(P0), f(P1), . . . , f(Pn)) =
0. Then f ∈ L(mP∞ − ∑

i∈A Pi). This implies that f = 0 as deg (mP∞−
∑

i∈A Pi

)
< 0. Therefore, f(P0) = 0.

If |A| � m−k−2g+1, then dim L (mP∞)−dim L (
mP∞ − ∑

i∈A Pi − P0

)
=

k + |A|. This implies that π{0}∪A is surjective. Hence, for any α ∈ FP0 , there is
a function f such that projA(f(P0), f(P1), . . . , f(Pn)) = 0 and f(P0) = α.

Next we will prove that the share-to-secret map of C is multiplicative. First,
we note that C is unitary as 1 ∈ L(mP∞). Consider the Fq-linear space

Σ = {(f(P0), f(P1), . . . , f(Pn)) : f ∈ L(2mP∞)} ⊆ FP0 × F
n
q .

Then Σ contains C∗2. As 2m + 1 � n, the vector (f(P1), . . . , f(Pn)) deter-
mines the function f ∈ L(2mP∞) uniquely, and hence f(P0). Therefore,
Σ has n-reconstruction. Thus, we can define the share-to-secret map ρ:
ρ(f(P1), . . . , f(Pn)) = f(P0). It is clear that ρ is an extension of the share-
to-secret map of C. Furthermore, for any two functions f, g ∈ L(mP∞), we have
fg ∈ L(2mP∞). Hence, we have

ρ((f(P1), . . . , f(Pn)) ∗ (g(P1), . . . , g(Pn))) = ρ((fg)(P1), . . . , (fg)(Pn))
= (fg)(P0) = f(P0)g(P0).

Since Σ has (2m + 1)-reconstruction, so does C∗2.

A.1 Construction via Reed-Solomon Codes

Let α1, . . . , αN ∈ Fqk be N pairwise distinct nonzero elements. Let α0 be a root
of an irreducible polynomial over Fqk of degree �. Denote by Fqk [x]<K the set of
polynomials over Fqk of degree less than K. The Reed-Solomon code is defined
by

RSk,�[N,K]q := {(f(α0), f(α1), . . . , f(αN )) : f ∈ Fqk [x]<K} ⊂ Fqk� × F
N
qk .

Applying Lemma 12 to the rational function fields gives the following result.

Lemma 13. Let RSk,�[N,K]q be the Reed-Solomon code defined above. If N/2 >
K − 1 � � − 1, then it is a qk-ary LSSS on N players with secret space Fqk� ,
share space Fqk . Moreover, we have the following properties

(i) It has K-reconstruction and (K − �)-privacy.
(ii) The share-to-secret of RSk,�[N,K]q is multiplicative.
(iii) RSk,�[N,K]∗2q has (2K − 1)-reconstruction.
(iv) If N = Ω(qk), then the share generation and secret reconstruction can be

computed in time O(N log2 N log log N).

Proof. The first three parts follows from Lemma 12 when applying the rational
function field Fqk(x). As the encoding and decoding of a Reed-Solomon code can
be run in time O(N log2 N log log N) (see [2]), the last claim follows.
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A.2 Garcia-Stichtenoth Tower

In the Garcia-Stichtenoth tower {Ei} over Fq, each extension Ei/Ei−1 has degree√
q. The detailed result is given below.

Lemma 14 (via Garcia-Stichtenoth tower). Let q be an even power of a
prime. Then there exists a family {Fi/Fq} function fields such that

(i) The number N(Fi) of Fq-rational places is strictly increasing as i increases.
(ii) limi→∞

N(Fi)
g(Fi)

=
√

q − 1, where g(Fi) denotes the genus of Fi.

(iii) limi→∞
N(Fi)

N(Fi−1)
=

√
q.

Furthermore, algebraic-geometry codes of length n based on this family can be
encoded and decoded in time O(n3 log2 q) (see [26]).

A.3 Construction via Garcia-Stichtenoth Tower

By applying the Garcia-Stichtenoth tower given in Lemma 14 and the construc-
tion of LSSS given in Lemma 12, we obtain the following result.

Theorem 6 (via Garcia-Stichtenoth tower). Assume q is an even power of
a prime. Let ε ∈

(
0, 1

2 − 2√
q−1

)
and γ ∈ (

0, 1
2

)
be two reals with γ � ε + 2√

q−1 .
Then there exists a sequence {Ci} of q-ary LSSS on ni players with the secret
space Fqki , the share space Fq such that

(i) ki

ki−1
→ √

q.

(ii) limi→∞ ki

ni
= ε.

(iii) Ci has �γni�-reconstruction and ti-privacy satisfying ti

ni
→ γ − 2√

q−1 − ε.
(iv) C∗2

i has 2�γni�-reconstruction.
(v) the share-to-secret map ρi of Ci is multiplicative.
(vi) Ci can be constructed and computed in time O(n3

i ).

Proof. Let {Fi/Fq} be the family of the function fields given in Lemma14. Put
ni = N(Fi)−1, mi = �γni�−1 and ki = �εni�. Then ni/2 > mi � ki+2g(Fi)−1
and

ki

ki−1
=

�εni�
�εni−1� → √

q.

The desired results on Parts (i)–(v) follow from Lemma 12.

B Decode Concatenated Codes up to Its Unique
Decoding Radius

A naive decoding algorithm for concatenated code can not correct errors up to its
unique decoding radius. Let us explain why a naive algorithm fails to achieve this
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goal. Let C be a concatenated code with an inner code C1 and outer code C0. Let
En0 and En1 be the encoding algorithm of C0 and C1 respectively. Let Dec0 and
Dec1 be the decoding algorithm of C0 and C1 respectively. Given a codeword
c ∈ C, we can write c = (c1, . . . , cn) with ci ∈ C1. Let y = (y1, . . . ,yn) be
a corrupted codeword. The naive decoding algorithm goes as follows: we first
decode each substring yi by running the unique decoding algorithm Dec1(yi).
Let ci = Dec1(yi) and xi be the message encoded to ci, i.e., En1(xi) = ci.
The second step of our decoding algorithm is to decode (x1, . . . , xn) by running
Dec0. Since the decoding algorithm of inner code and outer code can correct
errors up to half of its minimum distance, this decoding strategy can correct
errors up to one-fourth of its minimum distance.

Forney [14] proposed a randomized algorithm to decoding concatenated code
up to its unique decoding radius provided that the decoding algorithms of inner
code and outer code are available. The time complexity of this random decoding
algorithm is the same as that of the naive decoding algorithm. Let us briefly
introduce this algorithm. This randomized algorithm first runs the decoding
algorithm of inner code on each yi of y = (y1, . . . ,yn), i.e., ci := Dec1(yi). Let
ei = ci − yi be the error vector. This randomized algorithm labels coordinate
i an erasure error with probability 2wt(ei)

d . Then, we run the erasure and error
decoding algorithm of the outer code on (x1, . . . , xn) with En1(xi) = ci or
xi =⊥. This randomized algorithm can be further derandomized at the cost of
log n factor increase in the time complexity [17] by setting a threshold w such
that an erasure error happens when 2wt(ei)

d ≥ w. We summarize the result in
the following lemma and refer interested readers to Chap. 12 in [17] for details.

Lemma 15. Let C be a concatenated code whose inner code C1 is a linear code
of length N and minimum distance D and outer code C0 is a linear code of
length n and minimum distance d. Assume that the decoding algorithm of C0

can correct e errors and r erasures with 2e + r ≤ D − 1 in time T0(N) and
the decoding algorithm of C1 can correct errors up to its unique decoding radius
d−1
2 in time T1(n). Then, there exists a deterministic decoding algorithm for C

that can correct errors up to its unique decoding radius Dd−1
2 and run in time

O((T1(n)N + T0(N))n).

Remark 6. If we let n = O(log N), T0(N) be quasi-linear in N and T1(n) is
a polynomial in n. Then, the total running time is quasi-linear in N and thus
quasi-linear in the code length of C. We will see that our concatenated LSSS
meets this condition. Thus, we can assume that our concatenated LSSS can be
decoded up to its unique decoding radius.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

2. Alekhnovich, M.: Linear Diophantine equations over polynomials and soft decoding
of Reed-Solomon codes. In: Proceedings of the FOCS 2002, Vancouver, BC, pp.
439-448 (2002)



468 R. Cramer et al.

3. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 31

4. Chudnovsky, D.V., Chudnovsky, G.V.: Algebraic complexities and algebraic curves
over finite fields. Proc. Nat. Acad. Sci. U.S.A. 84(7), 1739–1743 (1987)

5. Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically good ideal linear
secret sharing with strong multiplication over any fixed finite field. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 28

6. Chen, H., Cramer, R., de Haan, R., Pueyo, I.C.: Strongly multiplicative ramp
schemes from high degree rational points on curves. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 451–470. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 26

7. Cascudo, I., Cramer, R., Mirandola, D., Padró, C., Xing, C.: On secret sharing
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attaining the Drinfeld-Vlǎduţ bound. Invent. Math. 121, 211–222 (1995)

16. Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of func-
tion fields over finite fields. J. Number Theory 61(2), 248–273 (1996)

17. Guruswami, V., Rudra, A., Sudan, M.: Essential Coding Theory. https://cse.
buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf

18. Guruswami, V., Xing, C.: Hitting sets for low-degree polynomials with optimal
density. In: CCC, pp. 161–168 (2014)

19. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30 (2007)

20. Massey, L., Farrell, P.G.: Some applications of coding theory in cryptography. In:
Codes and Ciphers Cryptography and Coding IV, pp. 33–47. Formara Lt, Esses,
England (1995)

https://doi.org/10.1007/11818175_31
https://doi.org/10.1007/11818175_31
https://doi.org/10.1007/978-3-642-03356-8_28
https://doi.org/10.1007/978-3-540-78967-3_26
https://doi.org/10.1007/978-3-540-78967-3_26
https://doi.org/10.1007/978-3-642-22792-9_39
https://doi.org/10.1007/978-3-642-22792-9_39
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf


On the Complexity of Arithmetic Secret Sharing 469

21. Mirandola, D., Zémor, G.: Critical pairs for the product singleton bound. IEEE
Trans. Inf. Theory 61(7), 4928–4937 (2015)

22. Narayanan, A.K., Weidner, M.: Subquadratic time encodable codes beating the
Gilbert-Varshamov bound. IEEE Trans. Inf. Theory 65(10), 6010–6021 (2019)

23. Randriambololona, H.: An upper bound of singleton type for componentwise prod-
ucts of linear codes. IEEE Trans. Inform. Theor. 59(12), 7936–7939 (2013)

24. Randriambololona, H.: On products and powers of linear codes under componen-
twise multiplication, In: Contemporary Mathematics, vol. 637. AMS, Providence
(2015)

25. Shparlinski, I.E., Tsfasman, M.A., Vladut, S.G.: Curves with many points and
multiplication in finite fileds. In: Stichtenoth, H., Tsfasman, M.A. (eds.) Coding
Theory and Algebraic Geometry. LNM, vol. 1518, pp. 145–169. Springer, Heidel-
berg (1992). https://doi.org/10.1007/BFb0087999

26. Shum, K., Aleshnikov, I., Kumar, P.V., Stichtenoth, H., Deolalikar, V.: A low-
complexity algorithm for the construction of algebraic-geometric codes better than
the Gilbert-Varshamov bound. IEEE Trans. Inf. Theory 47, 2225–2241 (2001)

27. Stichtenoth, H.: Algebraic Function Fields and Codes, 2nd edn. Springer, Berlin
(2009). https://doi.org/10.1007/978-3-540-76878-4

https://doi.org/10.1007/BFb0087999
https://doi.org/10.1007/978-3-540-76878-4

	On the Complexity of Arithmetic Secret Sharing
	1 Introduction
	2 Linear Secret Sharing Schemes and Concatenation
	3 Quasi-linear Time LSSS with Strong Multiplication
	3.1 Secret Space Is the Extension Field Fqm
	3.2 Reverse Multiplication Friendly Embedding
	3.3 Make the Secret Space to Be Fqk

	A LSSS from Algebraic Curves
	A.1  Construction via Reed-Solomon Codes
	A.2  Garcia-Stichtenoth Tower
	A.3  Construction via Garcia-Stichtenoth Tower

	B Decode Concatenated Codes up to Its Unique Decoding Radius
	References




