37 research outputs found

    Tubular composite scaffolds produced via Diffusion Induced Phase Separation (DIPS) as a shaping strategy for anterior cruciate ligaments reconstruction

    Get PDF
    Injuries of tendons and ligaments are common, especially among the young population. Anterior cruciate ligament (ACL) injuries do not heal due to its limited vascularization and hence, surgical intervention is usually required. The ideal scaffold for ligament tissue engineering (TE) should be biocompatible and possess mechanical and functional characteristics comparable to the native ACL. The Diffusion Induced Phase Separation (DIPS) technique allows the preparation of homogenous porous tubular scaffold with micro-pores using a rather simple procedure. Composites based on biodegradable polymers and bioglass have attracted much attention in tissue reconstruction and repair because of their biological and physicochemical advantages. In this work a new approach in ACL TE will be proposed focussing on the development of a suitable technique for in vitro seeding of lapine ACL fibroblasts into tubular-shaped instructive Poly-lactic-acid (PLLA) scaffolds, supplemented or not with bioglass (BG) 1393, produced via DIPS. Tubular composite scaffold (diameters: 1.2 and 2 mm, +/- BG) were obtained through a dip coating around a cylindrical support followed by a DIPS. An 8%wt PLLA/dioxane solution was prepared with 5%wt of BG-1393 as filler. Preliminary in vitro cell culture trials were carried out by seeding lapine ACL fibroblasts inside the scaffolds (2 cm as length) employing different seeding strategies in order to find the best way that allows to obtain a homogeneous fibroblast distribution inside the tubes. (1) First trials consisted in the inoculating of the cell suspension inside the tubes and maintaining them in dynamical culture. (2) The second one was done by suspending the cells in a fibrin gel polymerized within the tubes by using of thrombin. (3) The third approach was carried out by using cell spheroids (three-dimensional self-assembled cell agglomerates). Cell attachment, viability and morphology were examined by live-death and Hematoxylin/Eosin stainings after 1, 7, 14 d and vimentin immunolabelings (7 d). Scanning electron microscopical analysis revealed that the internal surface of the tubes was homogeneously structured with micropores sized around 5 µm and a mean thickness of the wall of 60 µm. The results showed cell adhesion to the wall of the tubes with all seeding techniques applied even though with fibrin gel it was more homogenous. Furthermore, colonized areas expanded with culture time and the majority of cell survived irrespectively of seeding techniques. (1) In inoculation phase, many cells left the scaffold and attached on the plate. Even after the dynamic culture (rotating device) most cells covered only half the tube inner surface. (2) In the second trial, a fibrin gel was used to achieve a homogenous cell distribution during seeding. In the early stage (48 h) cells remained captured inside the fibrin, but after 7 d they become elongated and migrated from the fibrin to the inner tube surface forming a compact cell layer. So, the fibrin appears helpful to achieve an immediate high cell seeding efficiency and an almost homogeneous cell distribution inside the tubes. (3) Although using the spheroid technique the scaffold internal surface was not homogeneously colonized with cells, after 7 d cell migration to the inner scaffold surface from the attaching spheroids could be observed. In longitudinal sections cells were elongated like typical ligament fibroblasts parallel to the longitudinal tube axis. Therefore, it can be affirmed that employment of tubular scaffolds produced by DIPS could be a promising approach of ligament TE. In the future, it would be interesting to evaluate the effectiveness of seeding by combining the spheroids and the fibrin gel

    Uso de cannabis y desarrollo de esquizofrenia: ¿cuáles son los vínculos?

    Get PDF
    El cannabis es la droga más utilizada por personas con esquizofrenia. Sin embargo, la relación entre el consumo de cannabis y el desarrollo de esquizofrenia aún no ha sido completamente aclarada. Esta comunicación corta pretende destacar algunos vínculos estudiados entre el consumo de cannabis y el desarrollo de esquizofrenia. Los autores resumen algunos de los principales hallazgos de varias investigaciones realizadas sobre este tema, incluyendo estudios sobre la sustancia blanca del cerebro, el circuito de recompensa cerebral, la fisiopatología del hipocampo, el volumen cerebral, la edad de inicio de la psicosis, las características del uso de cannabis y los rasgos de personalidad, la genética, la neuroquímica, así como la respuesta al estrés. Los autores concuerdan con la noción de que hay dos hipótesis más convincentes sobre el vínculo entre el cannabis y la esquizofrenia: 1. Cannabis como causa contribuyente y, 2. Vulnerabilidad compartida. Los autores hacen hincapié en que el consumo de cannabis no provoca por sí mismo un trastorno psicótico; sin embargo, tanto el uso temprano como el uso intensivo del mismo son más probables en individuos con una vulnerabilidad a la psicosis. El uso del cannabis es posiblemente el factor de riesgo medioambiental más modificable de la esquizofrenia, por lo que es necesaria una advertencia de salud pública de que el consumo de cannabis puede aumentar el riesgo de trastornos psicóticos

    Potential roles of extracellular vesicles in brain cell-to-cell communication

    Get PDF
    Potential roles of extracellular vesicles in brain cell-to-cell communication Extracellular vesicles (EVs) are released into thè extracellular space from both cancer and normal brain cells, and are probably able to modify thè phenotypic properties of receiving cells1. EVs released from astrocytes and neurons contain FGF2 and VEGF2'3 and induce a 'blood-brain barrier' (BBB) phenotype in cultured brain capillary endothelial cells (BCECs, unpublished results), On thè other hand, EVs from G26/24 oligodendroglioma induce apoptosis in neurons and astrocytes4-5. These effects are probably due to Fas Ligand and TRAIL, present in G26/24 vesicles4-5. Moreover, G26/24 EVs contain extracellular matrix remodeling proteases (such as ADAMTS)6, H1.0 histone protein, and H1.0 mRNA7. In particular, we previously hypothesized that G26/24 cells, and tumor cells in generai, can escape differentiation cues, and continue to proliferate by eliminating proteins, such as thè H1° linker histone (and its mRNA)7, which could otherwise block proliferation. To study vesicle release in a System that can better resemble in vivo conditions, astrocytes and BCECs were cultured on poly-L-lactic acid (PLLA) scaffolds and tested for their ability to grow and survive on this three-dimensional structures. We analyzed in parallel thè celi growth in 2D and 3D culture systems and observed thè differences in celi morphology by fluorescence analysis: threedimensional scaffolds have thè ability to guide celi growth, provide support, encourage celi adhesion and proliferation. Astrocytes8 and BCECs (unpublished results) adapted well to these porous matrices, not only remaining on thè surface, but also penetrating inside thè scaffolds. EVs released by astrocytes in these scaffolds are probably exosomes, as suggested by transmission electron microscopy pictures, and by thè presence of intracellular structures resembling multivesicular bodies. This 3D celi culture System could be further enriched to host different brain celi types, in order to set, for example, an in vitro model of BBB, that may be useful for drug delivery studies, and for thè formulation of new therapeutic strategies for thè treatment of neurological diseases. References [1] Schiera, G., Di Liegro, C.M., Di Liegro I. Int J Mol Sci. 2017, 18(12). pii: E2774. [2] Schiera, G., Proia, P., Alberti, C., Mineo, M., Savettieri, G., Di Liegro, I., 2007. J Celi Mol Med. 2007, 111(6), 1384-94. [3] Proia, P., Schiera, G., Mineo, M., Ingrassia, A.M. Santoro, G., Savettieri, G., Di Liegro, I. Int J Mol Med. 2008, 21(1), 63-7. [4] D'Agostino, S., Salamene, M., Di Liegro, I., Vittorelli, ML, Int J Oncol. 2006, 29(5), 1075-85. [5] Lo Cicero, A., Schiera, G., Proia, P., Saladino, P., Savettieri, G., Di Liegro, C.M., Di Liegro, I. Int J Oncol. 2011,39(6): 1353-7. [6] Lo Cicero, A., Majkowska, I., Nagase, H., Di Liegro, I., Troeberg, L., Matrix Biol. 2012, 31(4), 229-33. [7] Schiera, G., Di Liegro, C.M., Saladino, P., Pitti, R., Savettieri, G., Proia, P., Di Liegro, I. Int J Oncol. 2013, 43(6), 1771-6. [8] Carfì Pavia, F., Di Bella, M.A., Brucato, V., Blanda, V., Zummo, F., Vitrano, I., Di Liegro, C.M., Ghersi, G., Di Liegro, I., Schiera, G. Mol Med Rep. 2019 [Epub ahead of print]. [9] Di Bella MA, Zummo F., Carfì Pavia F., Brucato V., Di Liegro I., Schiera G. 2017, In: Microscopy and Imaging Science: practical approaches to applied research and education, pp 260-264. Ed: A. Méndez-Vilas Publisher, Formatex Research Center (Spain), ISBN-13, 978-84-942134-9-6

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore