1,501 research outputs found

    Cathodoluminescence and Cross-sectional Transmission Electron Microscopy Studies for Deformation Behaviors of GaN Thin Films Under Berkovich Nanoindentation

    Get PDF
    In this study, details of Berkovich nanoindentation-induced mechanical deformation mechanisms of metal-organic chemical-vapor deposition-derived GaN thin films have been systematic investigated with the aid of the cathodoluminescence (CL) and the cross-sectional transmission electron microscopy (XTEM) techniques. The multiple ā€œpop-inā€ events were observed in the load-displacement (Pā€“h) curve and appeared to occur randomly by increasing the indentation load. These instabilities are attributed to the dislocation nucleation and propagation. The CL images of nanoindentation show very well-defined rosette structures with the hexagonal system and, clearly display the distribution of deformation-induced extended defects/dislocations which affect CL emission. By using focused ion beam milling to accurately position the cross-section of an indented area, XTEM results demonstrate that the major plastic deformation is taking place through the propagation of dislocations. The present observations are in support to the massive dislocations activities occurring underneath the indenter during the loading cycle. No evidence of either phase transformation or formation of micro-cracking was observed by means of scanning electron microscopy and XTEM observations. We also discuss how these features correlate with Berkovich nanoindentation produced defects/dislocations structures

    Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films

    Get PDF
    This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (a- and c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements (CSM) technique is used in the nanoindentation tests to determine the hardness and Youngā€™s modulus of ZnO thin films. The importance of the ratio (H/Efilm) of elastic to plastic deformation during nanoindentation of ZnO thin films on their behaviors in contact-induced damage during fabrication of ZnO-based devices is considered. In addition, the friction coefficient of ZnO thin films is also presented here

    Headache in the Pediatric Emergency Service: A Medical Center Experience

    Get PDF
    BackgroundHeadache is a common complaint in children and is one of the most common reasons for presentation at a pediatric emergency department (PED). This study described the etiologies of patients with headache seen in the PED and determined predictors of intracranial pathology (ICP) requiring urgent intervention. A secondary objective was to develop rapid, practical tools for screening headache in the PED.MethodsWe conducted a retrospective chart review of children who presented with a chief complaint of headache at the PED during 2008. First, we identified possible red flags in the patients' history or physical examination and neurological examination findings. Then, we recorded the brain computed tomography results.ResultsDuring the study period, 43,913 visits were made to the PED; in 409 (0.9%) patients, the chief complaint was headache. Acute viral, respiratory, and febrile illnesses comprised the most frequent cause of headache (59.9%). Six children (1.5%) had life-threatening ICP findings. In comparison with the group without ICP, the group with ICP had a significantly higher percentage of blurred vision (pĀ =Ā 0.008) and ataxia (pĀ =Ā 0.002).ConclusionBlurred vision and ataxia are the best clinical parameters to predict ICP findings

    High-yield antibody production using targeted integration and engineering CHO host

    Get PDF
    To identify the high expression sites in the CHO cells, we employed NGS to analyze the integration sites of a high producing cell line (titer \u3e 3g/L). The pair-end reads with one read mapped to the vector and the other read mapped to the CHO reference genome are extracted to identify the integration sites. To test the expression activity of the integration sites, we employed CRISPR/Cas9 to specifically integrate the antibody gene into CHO genome for expression. Our data showed 4 integration sites are in the high producing cell line. Among the 4 integration site, one integration site was tested by CRISPR/Cas9 for target integration of antibody gene for expression. The target integrated cell pool present higher expression level (130 mg/L/copy) and less copy number when compared other integration sites. Through single-copy integration method, we can also achieve 60-150 mg/L/copy in a batch culture. About 80% of the single-copy cell clones were stable at generation 60. We have also applied the CHO-specific microarray transcriptomics technology to identify genes that contribute to high productivity. Transfection of our proprietary dual promoter vector J 1.0 resulting in 1.65 to 2.4 fold increase in the expression in engineered CHO DXB11 host. Through fed-batch process development, 3 ā€“ 5 g/L mAb productivity can be achieved through targeted integration and engineered CHO host

    A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Get PDF
    The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT) networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD). The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of Ļ‡ c1 and Ļ‡ c2 production with sāˆš = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the Ļ‡ c1 and Ļ‡ c2 charmonium states are measured in pp collisions at sāˆš = 7 TeV with the ATLAS detector at the LHC using 4.5 fbāˆ’1 of integrated luminosity. The Ļ‡ c states are reconstructed through the radiative decay Ļ‡ c ā†’ J/ĻˆĪ³ (with J/Ļˆ ā†’ Ī¼ + Ī¼ āˆ’) where photons are reconstructed from Ī³ ā†’ e + e āˆ’ conversions. The production rate of the Ļ‡ c2 state relative to the Ļ‡ c1 state is measured for prompt and non-prompt Ļ‡ c as a function of J/Ļˆ transverse momentum. The prompt Ļ‡ c cross-sections are combined with existing measurements of prompt J/Ļˆ production to derive the fraction of prompt J/Ļˆ produced in feed-down from Ļ‡ c decays. The fractions of Ļ‡ c1 and Ļ‡ c2 produced in b-hadron decays are also measured

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39Ā pbāˆ’1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40Ā GeV to 500Ā GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Measurement of the production of a W boson in association with a charm quark in pp collisions at āˆšs = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fbāˆ’1 of pp collision data at sāˆš = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26āˆ’0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio Ļƒ(W + +cĀÆĀÆ)/Ļƒ(W āˆ’ + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the sāˆ’sĀÆĀÆĀÆ quark asymmetry

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at sāˆš=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of sāˆš=8 TeV. The analysis is performed in the H ā†’ Ī³Ī³ decay channel using 20.3 fbāˆ’1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp ā†’ H ā†’ Ī³Ī³ fiducial cross section is measured to be 43.2 Ā±9.4(stat.) āˆ’ā€‰2.9 +ā€‰3.2 (syst.) Ā±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    • ā€¦
    corecore