9 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Defeating Super-Reactive Jammers With Deception Strategy: Modeling, Signal Detection, and Performance Analysis

    Full text link
    This paper develops a novel framework to defeat a super-reactive jammer, one of the most difficult jamming attacks to deal with in practice. Specifically, the jammer has an unlimited power budget and is equipped with the self-interference suppression capability to simultaneously attack and listen to the transmitter’s activities. Consequently, dealing with super-reactive jammers is very challenging. Thus, we introduce a smart deception mechanism to attract the jammer to continuously attack the channel and then leverage jamming signals to transmit data based on the ambient backscatter communication technology. To detect the backscattered signals, the maximum likelihood detector can be adopted. However, this method is notorious for its high computational complexity and requires the model of the current propagation environment as well as channel state information. Hence, we propose a deep learning-based detector that can dynamically adapt to any channels and noise distributions. With a Long Short-Term Memory network, our detector can learn the received signals’ dependencies to achieve a performance close to that of the optimal maximum likelihood detector. Through simulation and theoretical results, we demonstrate that with our approaches, the more power the jammer uses to attack the channel, the better bit error rate performance the transmitter can achieve

    Cooperative Communication Techniques in Wireless-Powered Backscatter Communication:Preambles and Technical Perspective

    No full text
    User cooperation is considered as a key enabling technology in wireless-powered backscatter communication (BaKcom) to improve the energy efficiency of the overall network while comparing to a traditional non-cooperative system. In light of the literature on BaKcom, most researchers consider such scenarios, where they backscatter the information directly to the receiver. The channel fading limits the system throughput between each transmitter and receiver pair. The limitation in system throughput motivates us to provide an introductory guideline and technical perspective of cooperative communication in the backscatter scenario. While this chapter mainly focuses on the technical aspects and potential applications of cooperative BaKcom, a brief historical perspective of cooperation techniques in general for wireless communications along with their implementation details, applications and research challenges is described. Section 2 of this chapter focuses on the role and uses of low powered Internet of Things (IoT) devices in future wireless communications and shows how BaKcom technology benefits such devices. In Section 3, we start our discussion by designing a system model and explaining the basic working of cooperative communication in backscatter scenarios. Based on the available literature, some potential cooperative techniques are provided, along with their comparative analysis. Finally, Section 4 concludes the chapter by providing future research directions

    MicroRNAs Profiling in Murine Models of Acute and Chronic Asthma: A Relationship with mRNAs Targets

    Get PDF
    BACKGROUND: miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3'UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. CONCLUSIONS/SIGNIFICANCE: This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma

    Rhinoviruses

    No full text
    Picornaviruses, which include the human rhinoviruses (HRVs) and enteroviruses (EVs), are the most frequent cause of acute human illness worldwide. HRVs are the most prevalent cause of acute respiratory tract illnesses (ARIs) which usually commence in the upper respiratory tract (URT). ARIs are the leading cause of morbidity in children under 5 years and occur in all seasons. ARIs linked to HRV infections are associated with excessive and perhaps inappropriate antibiotic prescribing and with significant direct and indirect healthcare expenditure. ARI incidence is highest in the first 2 years of life, with up to thirteen episodes per year including up to six positive for an HRV, and it is not uncommon to average one infection per child-month

    Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the 'red complex', a prototype polybacterial pathogenic consortium in periodontitis

    No full text
    corecore