35 research outputs found

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Inhibition of the Wnt/β-catenin pathway enhances anti-tumor immunity in ovarian cancer

    No full text
    Background: The Wnt/β-catenin pathway is linked to tumorigenesis in a variety of tumors and promotes T cell exclusion and resistance to checkpoint inhibitors. We sought to determine whether a small molecule inhibitor of this pathway, WNT974, would impair tumor growth, affect gene expression patterns, and improve the immune response in human and murine ovarian cancer models. Methods: Human ovarian cancer cells were treated with WNT974 in vitro. RNAseq libraries were constructed and differences in gene expression patterns between responders and nonresponders were compared to The Cancer Genome Atlas (TCGA). Mice with subcutaneous or intraperitoneal ID8 ovarian cancer tumors were treated with WNT974, paclitaxel, combination, or control. Tumor growth and survival were measured. Flow cytometry and β-TCR repertoire analysis were used to determine the immune response. Results: Gene expression profiling revealed distinct signatures in responders and nonresponders, which strongly correlated with T cell infiltration patterns in the TCGA analysis of ovarian cancer. WNT974 inhibited tumor growth, prevented ascites formation, and prolonged survival in mouse models. WNT974 increased the ratio of CD8+ T cells to T regulatory cells (Tregs) in tumors and enhanced the effector functions of infiltrating CD4+ and CD8+ T cells. Treatment also decreased the expression of inhibitory receptors on CD8+ T cells. Combining WNT974 with paclitaxel further reduced tumor growth, prolonged survival, and expanded the T cell repertoire. Conclusions: These findings suggest that inhibiting the Wnt/β-catenin pathway may have a potent immunomodulatory effect in the treatment of ovarian cancer, particularly when combined with paclitaxel

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis

    No full text
    It has been suggested that corticomotoneuronal drive to ankle dorsiflexors is greater than to ankle plantar flexor muscles, despite the finding that plantar flexors are no less active than TA during walking and standing. The present study was undertaken to determine whether there was differential involvement of distal lower limb muscles in amyotrophic lateral sclerosis (ALS), to elucidate pathophysiological mechanisms of selective muscle involvement. Prospective studies were undertaken in 52 ALS patients, including clinical assessment, disease staging (revised ALS functional rating scale), Medical Research Council sum score, and a scale of upper motor neurone (UMN) dysfunction. Motor unit number estimates (MUNE) and compound muscle action potentials (CMAP) from ankle dorsiflexors and plantar flexors were used to provide objective measures. A novel ‘split leg index’ was calculated as follows: SLI = CMAPDF 7 CMAPPF. In ALS, there was significantly greater reduction of MUNE and CMAP amplitude recorded from plantar flexors when compared to dorsiflexors, suggesting preferential involvement of plantar flexor muscles, underpinning a ‘split leg’ appearance. The SLI correlated with clinical plantar flexor strength (R= -0.56, p\0.001). In no patient did the SLI suggest preferential dorsiflexor involvement. In subgroup analyses, mean SLI was greatest in lower limb-onset ALS. In conclusion, the present study has established dissociated involvement of muscles acting around the ankle in ALS. We suggest this reflects underlying differences in cortical, descending or local spinal modulation of these muscles
    corecore