518 research outputs found

    Noncommutative symmetric functions and Laplace operators for classical Lie algebras

    Get PDF
    New systems of Laplace (Casimir) operators for the orthogonal and symplectic Lie algebras are constructed. The operators are expressed in terms of paths in graphs related to matrices formed by the generators of these Lie algebras with the use of some properties of the noncommutative symmetric functions associated with a matrix. The decomposition of the Sklyanin determinant into a product of quasi-determinants play the main role in the construction. Analogous decomposition for the quantum determinant provides an alternative proof of the known construction for the Lie algebra gl(N).Comment: 25 page

    Rapid microwave-assisted polyol synthesis of TiO2-supported ruthenium catalysts for levulinic acid hydrogenation

    Get PDF
    One wt% Ru/TiO2 catalysts prepared by a one-pot microwave-assisted polyol method have been shown to be highly active for Levulinic acid hydrogenation to Îł-Valerolactone. Preparation temperature, microwave irradiation time and choice of Ru precursor were found to have a significant effect on catalyst activity. In the case of Ru(acac)3-derived catalysts, increasing temperature and longer irradiation times increased catalyst activity to a maximum LA conversion of 69%. Conversely, for catalysts prepared using RuCl3, shorter preparation times and lower temperatures yielded more active catalysts, with a maximum LA conversion of 67%. Catalysts prepared using either precursor were found to contain highly dispersed nanoparticles <3 nm in diameter. XPS analysis of the most and least active catalysts shows that the catalyst surface is covered in a layer of insoluble carbon with surface concentrations exceeding 40% in some cases. This can be attributed to the formation of large condensation oligomers from the reaction between the solvent, ethylene glycol and its oxidation products, as evidenced by the presence of C-O and C = O functionality on the catalyst surfac

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Probing composition distributions in nanoalloy catalysts with correlative electron microscopy

    Get PDF
    Alloyed nanoparticles are important functional materials and have wide applications especially in heterogeneous catalysis and electrocatalysis. Controlled synthesis of nanoalloys is desirable in order to understand their structure–property relationships and further optimize their performance. While many synthesis methods have been developed, information on the resultant composition distributions among particles is often not available, and uniformity of composition from particle-to-particle is often incorrectly assumed. Such an analysis would require extensive work on a high-resolution analytical electron microscope, which has some drawbacks and the high-resolution equipment is not always readily accessible. We hereby introduce an alternative way for composition analysis of nanoalloys via a correlative electron microscopy approach, separating the size measurement (imaging) and composition analysis between TEM and SEM instruments. Using a case study of two AuPd nanoalloys which have very similar size distributions but significantly different composition distributions and catalytic activities, we demonstrate both the necessity of performing composition distribution analysis on ultrasmall nanoalloys and the feasibility of this method. We show that a more efficient X-ray analysis on nanoalloys can be done in an SEM due to intrinsically higher ionization cross-sections from the relatively lower energy (e.g. 20 keV) electron beam and the possibility of using large probe currents and X-ray detectors with large collection angles

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    • 

    corecore