2,226 research outputs found
An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae
BACKGROUND: In S. cerevisiae the β-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. RESULTS: Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. CONCLUSION: Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization
δ-Aminolevulinic Acid Dehydratase Polymorphism and Risk of Brain Tumors in Adults
The enzyme δ -aminolevulinic acid dehydratase (ALAD), which catalyzes the second step of heme synthesis, can be inhibited by several chemicals, including lead, a potential risk factor for brain tumors, particularly meningioma. In this study we examined whether the ALAD G177C polymorphism in the gene coding for ALAD is associated with risk of intracranial tumors of the brain and nervous system. We use data from a case–control study with 782 incident brain tumor cases and 799 controls frequency matched on hospital, age, sex, race/ethnicity, and residential proximity to the hospital. Blood samples were drawn and DNA subsequently sent for genotyping for 73% of subjects. ALAD genotype was determined for 94% of these samples (355 glioma, 151 meningioma, 67 acoustic neuroma, and 505 controls). Having one or more copy of the ALAD2 allele was associated with increased risk for meningioma [odds ratio (OR) = 1.6; 95% confidence interval (CI), 1.0–2.6], with the association appearing stronger in males (OR = 3.5; 95% CI, 1.3–9.2) than in females (OR = 1.2; 95% CI, 0.7–2.2). No increased risk associated with the ALAD2 variant was observed for glioma or acoustic neuroma. These findings suggest that the ALAD2 allele may increase genetic susceptibility to meningioma
Optimizing Optical Flow Cytometry for Cell Volume-Based Sorting and Analysis
Cell size is a defining characteristic central to cell function and ultimately to tissue architecture. The ability to sort cell subpopulations of different sizes would facilitate investigation at genomic and proteomic levels of mechanisms by which cells attain and maintain their size. Currently available cell sorters, however, cannot directly measure cell volume electronically, and it would therefore be desirable to know which of the optical measurements that can be made in such instruments provide the best estimate of volume. We investigated several different light scattering and fluorescence measurements in several different cell lines, sorting cell fractions from the high and low end of distributions, and measuring volume electronically to determine which sorting strategy yielded the best separated volume distributions. Since we found that different optical measurements were optimal for different cell lines, we suggest that following this procedure will enable other investigators to optimize their own cell sorters for volume-based separation of the cell types with which they work
The nature of the intra-night optical variability in blazars
In this paper we present results of a short-term optical monitoring of 13
blazars. The objects were monitored mostly in the R-band for a total of ~ 160
hours between 2006 and 2011. We study the nature of the short-term variations
and show that most of them could be described as slow, smooth, and (almost)
linear changes of up to ~ 0.1 mag/hour, but many objects show no short-term
variations at all. In fact, we found only ~ 2 per cent chance to observe
variability of more than 0.1 mag/hour for the sample we observed. Hints for
quasi-periodic oscillations at very low amplitude levels are also found for
some objects. We briefly discuss some of the possible mechanisms to generate
the intra-night variability and the quasi-periodic oscillations.Comment: 10 pages, 13 figures, 1 table, Accepted for Publication in MNRA
On the geometry of the set of symmetric matrices with repeated eigenvalues
We investigate some geometric properties of the real algebraic variety \u394 of symmetric matrices with repeated eigenvalues. We explicitly compute the volume of its intersection with the sphere and prove a Eckart\u2013Young\u2013Mirsky-type theorem for the distance function from a generic matrix to points in \u394. We exhibit connections of our study to real algebraic geometry (computing the Euclidean distance degree of \u394) and random matrix theory
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices
The Current State of Performance Appraisal Research and Practice: Concerns, Directions, and Implications
On the surface, it is not readily apparent how some performance appraisal research issues inform performance appraisal practice. Because performance appraisal is an applied topic, it is useful to periodically consider the current state of performance research and its relation to performance appraisal practice. This review examines the performance appraisal literature published in both academic and practitioner outlets between 1985 and 1990, briefly discusses the current state of performance appraisal practice, highlights the juxtaposition of research and practice, and suggests directions for further research
One-year outcomes of the ARTISAN-SNM study with the Axonics System for the treatment of urinary urgency incontinence
Aims: Sacral neuromodulation (SNM) is a guideline-recommended treatment for voiding dysfunction including urgency, urge incontinence, and nonobstructive retention as well
Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
- …