681 research outputs found

    Preliminary design and analysis for immersed tube tunnel across the İzmir Bay

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Civil Engineering, Izmir, 2008Includes bibliographical references (leaves: 109-112)Text in English; Abstract: Turkish and Englishxi, 112 leavesIn this study, a preliminary design and analysis of an immersed tube tunnel is presented. The tube tunnel will connect the two coasts of the İzmir Bay and whereby will ease the transportation of the city. The reason to suggest an immersed tube tunnel is due to the shallow water depth (<25 m) and that the soil profile of the İzmir Bay is made up of silty-sand. Hence, the Bay is appropriate for an immersed tube tunnel.First, a possible alignment was assigned for the tunnel. The technical, geometric properties of the tubes were determined, and the detailed drawings of them were made.The allowable bearing capacity of the seabed was calculated and it was determined that the soil has not enough capacity to withstand the design load. The liquefaction risk of the soil was investigated as well, and it was shown that the soil has high liquefaction potential.A static analysis of the tunnel was made in Calculix, a finite element program.The vertical displacement of the tube unit under static loads was calculated to be above the permissible settlement value. Afterwards, the seismic analysis was made to investigate stresses developed due to both racking and axial deformation of the tunnel during an earthquake. It was found that, the max stress due to the racking effect is less than the compressive strength of the concrete, and max stress due to the axial deformation is larger than compressive strength of the concrete. The high in the tube occur, because of the tubes high stiffness. This problem was solved by releasing the rigid connections in between two tube units. If these connections are made by using same form of elastomer joints, the deformation will occur in these joints, releasing the tubes internal stresses.Considering these drawbacks, ground improvement was recommended for the seabed and an increased value of the standard penetration of the soil was estimated.Then, the analyses were repeated and it was found that all drawbacks were eliminated.As a conclusion, it was decided that if suggested improvements are made in the seabed soil, the immersed tube tunnel can be constructed across the İzmir Bay

    Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars

    Full text link
    Despite observed strong correlations between central supermassive black holes (SMBHs) and star-formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily-obscured to unobscured quasars as a function of cosmic epoch up to z~3, and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represent two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily-obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH and coeval star formation.Comment: Accepted for publication in Science. Published by Science Express on March 25th. 17 pages, 5 figures, including supplemental online materia

    A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field. II. The Role of Mergers in Galaxy Evolution

    Get PDF
    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 10^(12) L_☉) being up to ~50%. We also find that the fraction of spirals drops dramatically with L_(IR). Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L_(IR) 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U – V color of the galaxies in our sample peaks in the green valley (= 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals (<10^(12) M_☉) to have been formed entirely by gas-rich major mergers

    Near-Infrared MOSFIRE Spectra of Dusty Star-Forming Galaxies at 0.2<z<4

    Get PDF
    We present near-infrared and optical spectroscopic observations of a sample of 450μ\mum and 850μ\mum-selected dusty star-forming galaxies (DSFGs) identified in a 400 arcmin2^2 area in the COSMOS field. Thirty-one sources of the 102 targets were spectroscopically confirmed at 0.2<z<40.2<z<4, identified primarily in the near-infrared with Keck MOSFIRE and some in the optical with Keck LRIS and DEIMOS. The low rate of confirmation is attributable both to high rest-frame optical obscuration in our targets and limited sensitivity to certain redshift ranges. The high-quality photometric redshifts available in the COSMOS field allow us to test the robustness of photometric redshifts for DSFGs. We find a subset (11/3135\approx35%) of DSFGs with inaccurate (Δz/(1+z)>0.2\Delta z/(1+z)>0.2) or non-existent photometric redshifts; these have very distinct spectral energy distributions from the remaining DSFGs, suggesting a decoupling of highly obscured and unobscured components. We present a composite rest-frame 4300--7300\AA\ spectrum for DSFGs, and find evidence of 200±\pm30 km s1^{-1} gas outflows. Nebular line emission for a sub-sample of our detections indicate that hard ionizing radiation fields are ubiquitous in high-z DSFGs, even more so than typical mass or UV-selected high-z galaxies. We also confirm the extreme level of dust obscuration in DSFGs, measuring very high Balmer decrements, and very high ratios of IR to UV and IR to Hα\alpha luminosities. This work demonstrates the need to broaden the use of wide bandwidth technology in the millimeter to the spectroscopic confirmations of large samples of high-z DSFGs, as the difficulty in confirming such sources at optical/near-infrared wavelengths is exceedingly challenging given their obscuration.Comment: 14 pages, 13 figures, ApJ accepted. Composite DSFG Halpha spectrum available at www.as.utexas.edu/~cmcasey/downloads.htm

    A Far-infrared Characterization of 24 μm Selected Galaxies at 0 < z < 2.5 using Stacking at 70 μm and 160 μm in the COSMOS Field

    Get PDF
    We present a study of the average properties of luminous infrared galaxies detected directly at 24 μm in the COSMOS field using a median stacking analysis at 70 μm and 160 μm. Over 35,000 sources spanning 0 ≤ z ≤ 3 and 0.06 mJy ≤ S_(24) ≤ 3.0 mJy are stacked, divided into bins of both photometric redshift and 24 μm flux. We find no correlation of S_(70)/S_(24) flux density ratio with S_(24), but find that galaxies with higher S_(24) have a lower S_(160)/S_(24) flux density ratio. These observed ratios suggest that 24 μm selected galaxies have warmer spectral energy distributions (SEDs) at higher mid-IR fluxes, and therefore have a possible higher fraction of active galactic nuclei. Comparisons of the average S_(70)/S_(24) and S_(160)/S_(24) colors with various empirical templates and theoretical models show that the galaxies detected at 24 μm are consistent with "normal" star-forming galaxies and warm mid-IR galaxies such as Mrk 231, but inconsistent with heavily obscured galaxies such as Arp 220. We perform a χ^2 analysis to determine best-fit galactic model SEDs and total IR luminosities for each of our bins. We compare our results to previous methods of estimating L IR and find that previous methods show considerable agreement over the full redshift range, except for the brightest S_(24) sources, where they overpredict the bolometric IR luminosity at high redshift, most likely due to their warmer dust SED. We present a table that can be used as a more accurate and robust method for estimating bolometric infrared luminosity from 24 μm flux densities

    The Multiple Timescales of Optical Variability of the Blazar 3C 279 During the 2001-2002 Outburst

    Full text link
    During 2001-2002 the optically violent variable (OVV) blazar 3C 279 un- derwent the most intense outburst seen during the entire fourteen year history that this quasar has been studied at Colgate University's Foggy Bottom Obser- vatory (FBO). This study concentrates on ~1600 R-filter images taken during this period of activity. This data set includes twenty-nine nights of microvari- ability coverage. The outburst began in March 2001, after 3C 279 had faded to its faintest level, R = 15.5, in four years. The source reached its brightest level, R = 12.5, in the fourteen years of our study in August 2001, at which time it became unobservable due to its proximity to the Sun. Upon becoming observable again in mid-December 2001, 3C 279 fluctuated between R = 13.9 and R = 14.7, until a dramatic decrease in flux level in June-July 2002 brought the source back down to a level comparable to its pre-outburst state. The source exhibited numerous week-long flares of approximately one magnitude during the outburst period. Superposed on these flares were night-to-night variations of up to one half magnitude and intra-night microvariability of up to 0.13 magnitude in three hours. We use visual inspection of the light curve as well as numerical timescale analysis tools (the autocorrelation function, the structure function, and the power spectrum) to characterize the multiple timescales of variability ranging from 1.5 years to several hours.Comment: 44 pages, 21 figures, 3 tables Accepted for publication in the Astronomical Journa
    corecore