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Abstract
We investigate some geometric properties of the real algebraic variety� of symmetric
matrices with repeated eigenvalues. We explicitly compute the volume of its intersec-
tion with the sphere and prove a Eckart–Young–Mirsky-type theorem for the distance
function from a generic matrix to points in �. We exhibit connections of our study to
real algebraic geometry (computing the Euclidean distance degree of �) and random
matrix theory.

Keywords Integral geometry · Random matrices · Euclidean distance degree theory

1 Introduction

In this paper we investigate the geometry of the set � (below called discriminant) of
real symmetric matrices with repeated eigenvalues and of unit Frobenius norm:

� = {
Q ∈ Sym(n,R) : λi (Q) = λ j (Q) for some i �= j

} ∩ SN−1.

Here, λ1(Q), . . . , λn(Q) denote the eigenvalues of Q, the dimension of the space of
symmetric matrices is N := n(n+1)

2 and SN−1 denotes the unit sphere in Sym(n,R)

endowed with the Frobenius norm ‖Q‖ := √
tr(Q2).

This discriminant is a fundamental object and it appears in several areas of mathe-
matics, frommathematical physics to real algebraic geometry, see for instance (Arnold
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1972, 1995, 2003, 2011; Teytel 1999; Agrachev 2011; Agrachev and Lerario 2012;
Vassiliev 2003). We discover some new properties of this object (Theorems 1.1, 1.4)
and exhibit connections and applications of these properties to random matrix theory
(Sect. 1.4) and real algebraic geometry (Sect. 1.3).

The set � is an algebraic subset of SN−1. It is defined by the discriminant polyno-
mial:

disc(Q) :=
∏

i< j

(
λi (Q) − λ j (Q)

)2
,

which is a non-negative homogeneous polynomial of degree deg(disc) = n(n − 1) in
the entries of Q. Moreover, it is a sum of squares of real polynomials (Ilyushechkin
2005; Parlett 2002) and � is of codimension two. The set �sm of smooth points of �

is the set of real points of the smooth part of the Zariski closure of� in Sym(n,C) and
it consists of matrices with exactly two repeated eigenvalues. In fact, � is stratified
according to the multiplicity sequence of the eigenvalues; see (1.3).

1.1 TheVolume of the Set of Symmetric Matrices with Repeated Eigenvalues

Our first main result concerns the computation of the volume |�| of the discriminant,
which is defined to be the Riemannian volume of the smooth manifold �sm endowed
with the Riemannian metric induced by the inclusion �sm ⊂ SN−1.

Theorem 1.1 (The volume of the discriminant).

|�|
|SN−3| =

(
n

2

)
.

Remark 1 Results of this type (the computation of the volume of some relevant alge-
braic subsets of the space of matrices) have started appearing in the literature since
the 90’s (Edelman and Kostlan 1995; Edelman et al. 1994), with a particular emphasis
on asymptotic studies and complexity theory, and have been crucial for the theoretical
advance of numerical algebraic geometry, especially for what concerns the estimation
of the so called condition number of linear problems (Demmel 1988). The very first
result gives the volume of the set � ⊂ R

n2 of square matrices with zero determi-
nant and Frobenius norm one; this was computed in Edelman and Kostlan (1995) and
Edelman et al. (1994):

|�|
|Sn2−1| = √

π
�
( n+1

2

)

�
( n
2

) ∼
√

π

2
n1/2.

For example, this result is used in Edelman and Kostlan (1995, Theorem 6.1) to com-
pute the average number of zeroes of the determinant of a matrix of linear forms.
Subsequently this computation was extended to include the volume of the set of n×m
matrices of given corank in Beltrán (2011) and the volume of the set of symmetric
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On the Geometry of the Set of Symmetric Matrices…

matrices with determinant zero in Lerario and Lundberg (2016), with similar expres-
sions. Recently, in Beltrán and Kozhasov (2018) the above formula and Lerario and
Lundberg (2016, Thm. 3) were used to compute the expected condition number of the
polynomial eigenvalue problem whose input matrices are taken to be random.

In a related paperBreiding et al. (2017)we useTheorem1.1 for counting the average
number of singularities of a randomspectrahedron.Moreover, the proof ofTheorem1.1
requires the evaluation of the expectation of the square of the characteristic polynomial
of a GOE(n) matrix (Theorem 1.6 below), which constitutes a result of independent
interest.

Theorem 1.1 combined with Poincaré’s kinematic formula Howard (1993, p. 17)
allows to compute the average number of symmetric matrices with repeated eigenval-
ues in a uniformly distributed projective two-plane L ⊂ PSym(n,R) 	 RPN−1:

E #(L ∩ P�) = |P�|
|RPN−3| = |�|

|SN−3| =
(
n

2

)
, (1.1)

where by P� ⊂ PSym(n,R) 	 RPN−1 we denote the projectivization of the discrim-
inant. The following optimal bound on the number #(L ∩ P�) of symmetric matrices
with repeated eigenvalues in a generic projective two-plane L 	 RP2 ⊂ RPN−1 was
found in Sanyal et al. (2013, Corollary 15):

#(L ∩ P�) ≤
(
n + 1

3

)
. (1.2)

Remark 2 Consequence (1.1) combined with (1.2) “violates” a frequent phenomenon
in random algebraic geometry, which goes under the name of square root law:
for a large class of models of random systems, often related to the so called
Edelman–Kostlan–Shub–Smale models (Edelman and Kostlan 1995; Shub and Smale
1993b, a, c; Edelman et al. 1994;Kostlan 2002), the average number of solutions equals
(or is comparable to) the square root of the maximum number; here this is not the case.
We also observe that, surprisingly enough, the average cut of the discriminant is an
integer number (there is no reason to even expect that it should be a rational number!).

More generally one can ask about the expected number of matrices with a multiple
eigenvalue in a “random” compact 2-dimensional family. We prove the following.

Theorem 1.2 (Multiplicities in a random family). Let F : � → Sym(n,R) be a
random Gaussian field F = ( f1, . . . , fN ) with i.i.d. components and denote by π :
Sym(n,R)\{0} → SN−1 the projection map. Assume that:

1. with probability one the map π ◦ F is an embedding and
2. the expected number of solutions of the random system { f1 = f2 = 0} is finite.
Then:

E#F−1(C (�)) =
(
n

2

)
E #{ f1 = f2 = 0},

where C (�) ⊂ Sym(n,R) is the cone over �.
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Example 1 When each fi is a Kostlan polynomial of degree d, then the hypotheses
of Theorem 1.2 are verified and E #{ f1 = f2 = 0} = 2d|�|/|S2|; when each fi is
a degree-one Kostlan polynomial and � = S2, then E #{ f1 = f2 = 0} = 2 and we
recover (1.1).

1.2 An Eckart–Young–Mirsky-Type Theorem

The classical Eckart–Young–Mirsky theorem allows to find a best low rank approxi-
mation to a given matrix.

For r ≤ m ≤ n let us denote by �r the set of m × n complex matrices of rank r .
Then for a given m × n real or complex matrix A a rank r matrix Ã ∈ �r which is a
global minimizer of the distance function

distA : �r → R, B 
→ ‖A − B‖ :=
√√√√

m∑

i=1

n∑

j=1

|ai j − bi j |2

is called a best rank r approximation to A. The Eckart–Young–Mirsky theorem states
that if A = U∗SV is the singular value decomposition of A, i.e.,U is anm×m real or
complex unitary matrix, S is an m × n rectangular diagonal matrix with non-negative
diagonal entries s1 ≥ · · · ≥ sm ≥ 0 and V is an n × n real or complex unitary matrix,
then Ã = U∗ S̃V is a best rank r approximation to A, where S̃ denotes the rectangular
diagonal matrix with S̃i i = si for i = 1, . . . , r and S̃ j j = 0 for j = r + 1, . . . ,m.
Moreover, a best rank r approximation to a sufficiently generic matrix is actually
unique. More generally, one can show that any critical point of the distance function
distA : �r → R is of the form U∗ S̃ I V , where I ⊂ {1, 2, . . . ,m} is a subset of size
r and S̃ I is the rectangular diagonal matrix with S̃ Ii i = si for i ∈ I and S̃ Ij j = 0 for
j /∈ I . In particular, the number of critical points of distA for a generic matrix A is(n
r

)
. In Draisma et al. (2016) the authors call this count the Euclidean distance degree

of �r ; see also Sect. 1.3 below.
In the case of real symmetric matrices similar results are obtained by replacing

singular values σ1 ≥ · · · ≥ σn with absolute values of eigenvalues |λ1| > · · · > |λn|
and singular value decomposition U�V ∗ with spectral decomposition CT	C ; see
Helmke and Shayman (1995, Thm. 2.2) and Lerario and Lundberg (2016, Sec. 2).

For the distance function from a symmetric matrix to the cone over � we also have
an Eckart–Young–Mirsky-type theorem. We prove this theorem in Sect. 2.

Theorem 1.3 (Eckart–Young–Mirsky-type theorem). Let A ∈ Sym(n,R) be a generic
real symmetric matrix and let A = CT	C be its spectral decomposition with 	 =
diag(λ1, . . . , λn). Any critical point of the distance function

dA : C (�sm)\{0} → R

123
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is of the form CT	i, jC, where

	i, j = diag

⎛

⎝λ1, . . . ,
λi + λ j

2
i

, . . . ,
λi + λ j

2
j

, . . . , λn

⎞

⎠ , 1 ≤ i < j ≤ n.

Moreover, the function dA : C (�) → R attains its global minimum at exactly one
of the critical points CT	i, jC ∈ C (�sm)\{0} and the value of the minimum of dA
equals:

min
B∈C (�)

‖A − B‖ = min
1≤i< j≤n

|λi − λ j |√
2

.

Remark 3 Since C (�) ⊂ Sym(n,R) is the homogeneous cone over � ⊂ SN−1 the
above theorem readily implies an analogous result for the spherical distance func-

tion from A ∈ SN−1 to �. The critical points are (1 − (λi−λ j )
2

2 )−1/2 CT	i, jC and
the global minimum of the spherical distance function dS is minB∈� dS(A, B) =
min1≤i< j≤n arcsin

( |λi−λ j |√
2

)
.

The theorem is a special case of Theorem 1.4 below, that concerns the critical points
of the distance function to a fixed stratum of C (�). These strata are in bijection with
vectors of natural numbers w = (w1, w2, . . . , wn) ∈ N

n such that
∑n

i=1 i wi = n as
follows: let us denote byC (�)w the smooth semialgebraic submanifold of Sym(n,R)

consisting of symmetric matrices that for each i ≥ 1 have exactly wi eigenvalues of
multiplicity i . Then, by Shapiro and Vainshtein (1995, Lemma 1), the semialgebraic
sets C (�)w with w1 < n form a stratification of C (�):

C (�) =
⊔

w :w1<n

C (�)w (1.3)

In this notation, the complement ofC (�) can bewrittenC (�)(n,0,...,0) = Sym(n,R)\
C (�). By Arnold (1972, Lemma 1.1), the codimension of C (�)w in the space
Sym(n,R) equals

codim(C (�)w) =
n∑

i=1

(i − 1)(i + 2)

2
wi

Let us denote by Diag(n,R)w := Diag(n,R) ∩ C (�)w the set of diagonal matrices
in C (�)w and its Euclidean closure by Diag(n,R)w. This closure is an arrangement
of n!

1!w12!w2 3!w3 ··· many (
∑n

i=1 wi )-dimensional planes. Furthermore, for a sufficiently
generic diagonal matrix 	 = diag(λ1, . . . , λn) the distance function

d	 : Diag(n,R)w → R, 	̃ = diag(λ̃1, . . . , λ̃n) 
→
√√√√

n∑

i=1

(λi − λ̃i )2

has n!
1!w12!w2 3!w3 ··· critical points each of which is the orthogonal projection of	 on one

of the planes in the arrangement Diag(n,R)w and the distance d	 attains its unique

123



P. Breiding et al.

global minimum at one of these critical points. We will show that an analogous result
holds for

dA : C (�)w → R, Ã 
→ ‖A − Ã‖ =
√
tr((A − Ã)2),

the distance function from a general symmetric matrix A ∈ Sym(n,R) to the smooth
semialgebraic set C (�)w. The proof for the following theorem is given in Sect. 2.

Theorem 1.4 (Eckart–Young–Mirsky-type theorem for the strata). Let A ∈ Sym(n,R)

be a generic real symmetric matrix and let A = CT	C be its spectral decomposition.
Then:

1. Any critical point of the distance function dA : C (�)w → R is of the formCT 	̃C,
where 	̃ ∈ Diag(n,R)w is the orthogonal projection of 	 onto one of the planes
in Diag(n,R)w.

2. The distance function dA : C (�)w → R has exactly n!
1!w12!w2 3!w3 ··· critical points,

one of which is the unique global minimum of dA.

Remark 4 Note that the manifold C (�)w is not compact and therefore the function
dA : C (�)w → R might not a priori have a minimum.

1.3 Euclidean Distance Degree

Let X ⊂ R
m be a real algebraic variety and let XC ⊂ C

m denote its Zariski closure.
The number #{x ∈ Xsm : u − x ⊥ Tx Xsm} of critical points of the distance to the
smooth locus Xsm of X from a generic point u ∈ R

m can be estimated by the number
EDdeg(X) := #{x ∈ XC

sm : u − x ⊥ Tx XC
sm} of “complex critical points”. Here,

v ⊥ w is orthogonality with respect to the bilinear form (v,w) 
→ vTw. The quantity
EDdeg(X) does not depend on the choice of the generic point u ∈ R

m and it’s called
the Euclidean distance degree of X (Draisma et al. 2016). Also, solutions x ∈ XC

sm
to u − x ⊥ Tx XC

sm are called ED critical points of u with respect to X (Drusvyatskiy
et al. 2017). In the following theoremwe compute the Euclidean distance degree of the
variety C (�) ⊂ Sym(n,R) and show that all ED critical points are actually real (this
result is an analogue of Drusvyatskiy et al. (2017, Cor. 5.1) for the space of symmetric
matrices and the variety C (�)).

Theorem 1.5 Let A ∈ Sym(n,R) be a sufficiently generic symmetric matrix. Then the(n
2

)
real critical points of dA : C (�sm) → R from Theorem 1.3 are the only ED critical

points of A with respect to C (�) and the Euclidean distance degree of C (�) equals
EDdeg(C (�)) = (n

2

)
.

Remark 5 An analogous result holds for the closure of any other stratum of C (�)w.
Namely, EDdeg(C (�)w) = n!

1!w12!w2 3!w3 ··· and for a generic real symmetric matrix
A ∈ Sym(n,R) ED critical points are real and given in Theorem 1.4.

1.4 RandomMatrix Theory

The proof of Theorem1.1 eventually arrives at Eq. (3.7), which reduces our study to the
evaluation of a special integral over theGaussianOrthogonal Ensemble (GOE) (Mehta
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2004; Tao 2012). The connection between the volume of � and random symmetric
matrices comes from the fact that, in a sense, the geometry in the Euclidean space of
symmetric matrices with the Frobenius norm and the random GOE matrix model can
be seen as the same object under two different points of view.

The integral in (3.7) is the second moment of the characteristic polynomial of a
GOE matrix. In Mehta (2004) Mehta gives a general formula for all moments of
the characteristic polynomial of a GOE matrix. However, we were unable to locate
an exact evaluation of the formula for the second moment in the literature. For this
reason we added Proposition 4.2, in which we compute the second moment, to this
article. We use it in Sect. 4 to prove the following theorem.

Theorem 1.6 For a fixed positive integer k we have

∫

u∈R
E

Q∼GOE(k)
[det(Q − u1)2] e−u2 du = √

π
(k + 2)!
2k+1 .

An interesting remark in this direction is that some geometric properties of � can
be stated using the language of random matrix theory. For instance, the estimate on
the volume of a tube around � allows to estimate the probability that two eigenvalues
of a GOE(n) matrix are close: for ε > 0 small enough

P{mini �= j |λi (Q) − λ j (Q)| ≤ ε} ≤ 1

4

(
n

2

)
ε2 + O(ε3). (1.4)

The interest of this estimate is that it provides a non-asymptotic (as opposed to studies
in the limit n → ∞, Ben Arous and Bourgade 2013; Nguyen et al. 2017) result in
random matrix theory. It would be interesting to provide an estimate of the implied
constant in (1.4), however this might be difficult using our approach as it probably
involves estimating higher curvature integrals of �.

2 Critical Points of the Distance to the Discriminant

In this section we prove Theorems 1.3, 1.4 and 1.5. Since Theorem 1.3 is a special
case of Theorem 1.4, we start by proving the latter.

2.1 Proof of Theorem 1.4

Let us denote by C (�)w ⊂ Sym(n,R) the Euclidean closure of C (�)w. Note that
C (�)w is a (real) algebraic variety, the smooth locus of C (�)w is C (�)w and the
boundary C (�)w\C (�)w is a union of some strata C (�)w

′
of greater codimension.

The following result is an adaptation of Bik andDraisma (2017, Thm. 3) to the space
Sym(n,R) of real symmetric matrices, its subspace Diag(n,R) of diagonal matrices
and the action C ∈ O(n), A ∈ Sym(n,R) 
→ CT AC ∈ Sym(n,R). Note that the
assumptions of Bik and Draisma (2017, Thm. 3) are satisfied in this case as shown in
Bik and Draisma (2017, Sec. 3).
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Lemma 2.1 Let X ⊂ Sym(n,R) be a O(n)-invariant subvariety. Then for a sufficiently
generic 	 ∈ Diag(n,R) the set of critical points of the distance d	 : Xsm → R is
contained in X ∩ Diag(n,R).

Let now X = C (�)w, let A ∈ Sym(n,R) be a sufficiently generic symmetric
matrix and fix its spectral decomposition A = CT	C . By Lemma 2.1 critical points
of d	 : C (�)w → R are all diagonal. Since the intersection X ∩ Diag(n,R) =
Diag(n,R)w is an arrangement of n!

1!w12!w2 3!w3 ··· planes, critical points of d	 are the
orthogonal projections of 	 on each of the components of the plane arrangement.
Moreover, one of these points is the (unique) closest point on Diag(n,R)w to 	. The
critical points of the distance dA : C (�)w → R from A = CT	C are obtained via
conjugation of critical points of d	 by C ∈ O(n). Both claims follow. ��

2.2 Proof of Theorem 1.3

Let w = (n − 2, 1, 0, . . . , 0) and for a given symmetric matrix A ∈ Sym(n,R) let us
fix a spectral decomposition A = CT	C,	 = diag(λ1, . . . , λn). From Theorem 1.4
we know that the critical points of the distance function dA : C (�sm)\{0} → R are
of the form CT	i, jC , 1 ≤ i < j ≤ n, where 	i, j is the orthogonal projection of 	

onto the hyperplane {λi = λ j } ⊂ Diag(n,R)w. It is straightforward to check that

	i, j = diag

⎛

⎝λ1, . . . ,
λi + λ j

2
i

, . . . ,
λi + λ j

2
j

, . . . , λn

⎞

⎠ .

From this, it is immediate that the distance between 	 and 	i, j equals

‖	 − 	i, j‖ =
√

tr
((

	 − 	i, j
)2) = |λi − λ j |√

2

This finishes the proof. ��

2.3 Proof of Theorem 1.5

In the proof of Theorem 1.3 we showed that there are
(n
2

)
real ED critical points of the

distance function from a general real symmetric matrix A to C (�). In this subsection
we in particular argue that there are no other (complex) ED critical points in this case.
The argument is based onMain Theorem fromBik and Draisma (2017) which is stated
first.

Theorem 2.2 (Main Theorem from Bik and Draisma (2017)). Let V be a finite-
dimensional complex vector space equippedwith a non-degenerate symmetric bilinear
form, let GC be a complex algebraic group and let GC → O(V ) be an orthogonal
representation. Suppose that V0 ⊂ V is a linear subspace such that, for sufficiently
generic v0 ∈ V0, the space V is the orthogonal direct sum of V0 and the tangent space
Tv0G

Cv0 at v0 to its GC-orbit. Let XC be a GC-invariant closed subvariety of V . Set
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XC
0 = XC ∩ V0 and suppose that GCXC

0 is dense in XC. Then the ED degree of XC

in V equals the ED degree of XC
0 in V0.

We will apply this theorem to the space of complex symmetric matrices V =
Sym(n,C) endowed with the complexified Frobenius inner product, the subspace of
complex diagonal matrices V0 = Diag(n,C), the complex orthogonal group GC =
{C ∈ M(n,C) : CTC = 1} acting on V via conjugation and the Zariski closure
XC ⊂ Sym(n,C) of C (�) ⊂ Sym(n,R).

Let us denote by G = O(n) the orthogonal group. Since C (�) ⊂ Sym(n,R) is
G-invariant, by Drusvyatskiy et al. (2017, Lemma 2.1), the complex variety XC ⊂
Sym(n,C) is also G-invariant. Using the same argument as in Drusvyatskiy et al.
(2017, Thm. 2.2) we now show that XC is actually GC-invariant. Indeed, for a fixed
point A ∈ XC the map

γA : GC → Sym(n,C), C 
→ CT AC

is continuous and hence the set γ −1
A (XC) ⊂ GC is closed. Since by the above G ⊂

γ −1
A (XC) and since GC is the Zariski closure of G we must have γ −1

A (XC) = GC.
Now for any diagonalmatrix	 ∈ Diag(n,C)with pairwise distinct diagonal entries

the tangent space at 	 to the orbit GC	 = {CT	C : C ∈ GC} consists of complex
symmetric matrices with zeros on the diagonal:

T	(GC	) =
{
v	 − 	v : vT + v = 0

}
= {A ∈ Sym(n,C) : a11 = · · · = ann = 0}

In particular,
Sym(n,C) = Diag(n,C) + T	(GC	)

is the direct sum which is orthogonal with respect to the complexified Frobenius inner
product (A1, A2) 
→ tr(AT

1 A2).
As any real symmetric matrix can be diagonalized by some orthogonal matrix we

have

C (�) = G(C (�) ∩ Diag(n,R)) =
{
CT	C : C ∈ O(n),	 ∈ C (�) ∩ Diag(n,R)

}
.

This, together with the inclusion C (�) ⊂ GC(XC ∩ Diag(n,C)), imply that the set
GC(XC ∩ Diag(n,C)) is Zariski dense in XC. Applying Theorem (2.2) we obtain
that the ED degree of XC in Sym(n,C) equals the ED degree of XC ∩ Diag(n,C) in
Diag(n,C). Since XC∩Diag(n,C) = {	 ∈ Diag(n,C) : λi = λ j , i �= j} is the union
of
(n
2

)
hyperplanes the ED critical points of a generic 	 ∈ Diag(n,C) are orthogonal

projections from 	 to each of the hyperplanes (as in the proof of Theorem 1.3). In
particular, EDdeg(XC) = EDdeg(XC ∩ Diag(n,C)) = (n

2

)
and if 	 ∈ Diag(n,R)

is a generic real diagonal matrix ED critical points are all real. Finally, for a general
symmetric matrix A = CT	C all ED critical points are obtained from the ones for
	 ∈ Diag(n,R) via conjugation by C ∈ O(n).

123



P. Breiding et al.

The proof of the statement in Remark 5 is similar. Each plane in the plane arrange-
ment Diag(n,R)w yields one critical point and there are n!

1!w12!w2 3!w3 ··· many such
planes. ��

3 The Volume of the Discriminant

The goal of this section is to prove Theorems 1.1 and 1.2. As was mentioned in the
introduction, we reduce the computation of the volume to an integral over the GOE-
ensemble. This is why, before starting the proof, in the next subsection we recall some
preliminary concepts and facts from random matrix theory that will be used in the
sequel.

3.1 TheGOE(n)Model for RandomMatrices

The material we present here is from Mehta (2004).
The GOE(n) probability measure of any Lebesgue measurable subset U ⊂

Sym(n,R) is defined as follows:

P{U } = 1√
2
n√

π
N

∫

U
e− ‖A‖2

2 d A,

where d A = ∏
1≤i≤ j≤n d Ai j is the Lebesgue measure on the space of symmetric

matrices Sym(n,R) and, as before, ‖A‖ = √
tr(A2) is the Frobenius norm.

By Mehta (2004, Sec. 3.1), the joint density of the eigenvalues of a GOE(n) matrix

A is given by the measure 1
Zn

∫
V e− ‖λ‖2

2 |�(λ)| dλ, where dλ = ∏n
i=1 dλi is the

Lebesgue measure on R
n , V ⊂ R

n is a measurable subset, ‖λ‖2 = λ21 + · · · + λ2n is
the Euclidean norm, �(λ) := ∏

1≤i< j≤n(λ j − λi ) is the Vandermonde determinant
and Zn is the normalization constant whose value is given by the formula

Zn =
∫

Rn
e− ‖λ‖2

2 |�(λ)| dλ = √
2π

n
n∏

i=1

�(1 + i
2 )

�( 32 )
, (3.1)

seeMehta (2004,Eq. (17.6.7))withγ = a = 1
2 . In particular, for an integrable function

f : Sym(n,R) → R that depends only on the eigenvalues of A ∈ Sym(n,R), the
following identity holds

E
A∼GOE(n)

f (A) = 1

Zn

∫

V
f (λ1, . . . , λn) e

− ‖λ‖2
2 |�(λ)| dλ. (3.2)
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3.2 Proof of Theorem 1.1

In what follows we endow the orthogonal group O(n) with the left-invariant metric
defined on the Lie algebra T1O(n) by

〈u, v〉 = 1

2
tr(uT v), u, v ∈ T1O(n)

The following formula for the volume of O(n) can be found in Muirhead (1982,
Corollary 2.1.16):

|O(n)| = 2nπ
n(n+1)

4

∏n
i=1 �

( i
2

) (3.3)

Recall that by definition the volume of� equals the volume of the smooth part�sm ⊂
SN−1 that consists of symmetric matrices of unit norm with exactly two repeated
eigenvalues. Let us denote by (Sn−2)∗ the dense open subset of the (n − 2)-sphere
consisting of points with pairwise distinct coordinates. We consider the following
parametrization of �sm ⊂ SN−1:

p : O(n) × (Sn−2)∗ → �sm, (C, μ) 
→ CT diag(λ1, . . . , λn)C,

where λ1, . . . , λn are defined as

λ1 = μ1, λ2 = μ2, . . . , λn−2 = μn−2, λn−1 = μn−1√
2

, λn = μn−1√
2

. (3.4)

In Lemma 3.1 belowwe show that p is a submersion. Applying to it the smooth coarea
formula (see, e.g., Bürgisser and Cucker 2013, Theorem 17.8) we have

∫

A∈�sm

|p−1(A)| dA =
∫

(C,μ)∈O(n)×(Sn−2)∗
NJ(C,μ) p d(C, μ) (3.5)

Here NJ(C,μ) p denotes the normal Jacobian of p at (C, μ) and we compute its value
in the following lemma.

Lemma 3.1 The parametrization p : O(n)× (Sn−2)∗ → �sm is a submersion and its
normal Jacobian at (C, μ) ∈ O(n) × (Sn−2)∗ is given by the formula

NJ(C,μ) p = √
2

n(n−1)
2 −1 ∏

1≤i< j≤n−2

|μi − μ j |
n−2∏

i=1

∣∣∣∣μi − μn−1√
2

∣∣∣∣

2

.

Proof Recall that for a smooth submersion f : M → N between two Rieman-
nian manifolds the normal Jacobian of f at x ∈ M is the absolute value of the
determinant of the restriction of the differential Dx f : TxM → T f (x)N of f at x
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to the orthogonal complement of its kernel. We now show that the parametrization
p : O(n) × (Sn−2)∗ → �sm is a submersion and compute its normal Jacobian.

Note that p is equivariant with respect to the right action of O(n) on itself and
its action on �sm via conjugation, i.e., for all C, C̃ ∈ O(n) and μ ∈ Sn−2 we have
p(CC̃, μ) = C̃T p(C, μ)C̃ . Therefore, D(C,μ) p = CT D(1,μ) p C and, consequently,
NJ(C,μ) p = NJ(1,μ) p. We compute the latter. The differential of p at (1, μ) is the
map

D(1,μ) p : T1O(n) × TμS
n−2 → Tp(1,μ)�sm,

(
•
C,

•
μ) 
→ •

C
T
diag(λ1, . . . , λn) + diag(λ1, . . . , λn)

•
C + diag(

•
λ1, . . . ,

•
λn),

where
•
λi = •

μi for 1 ≤ i ≤ n − 2 and
•
λn−1 = •

λn =
•
μn−1√

2
. The Lie algebra T1O(n)

consists of skew-symmetric matrices:

T1O(n) =
{

•
C ∈ R

n×n : •
C

T = − •
C

}
.

Let Ei, j be the matrix that has zeros everywhere except for the entry (i, j) where it
equals 1. Then {Ei, j − E j,i : 1 ≤ i < j ≤ n} is an orthonormal basis for T1O(n).
One verifies that

D(1,μ) p(Ei, j − E j,i , 0) = (λ j − λi )(Ei, j + E j,i ), and

D(1,μ) p(0,
•
μ) = diag(

•
λ1, . . . ,

•
λn).

This implies that p is a submersion and

(ker D(1,μ) p)
⊥ = span{Ei, j − E j,i : 1 ≤ i < j ≤ n, (i, j) �= (n − 1, n)} ⊕⊥ Tμ(Sn−2)∗.

Combining thiswith the fact that the restriction of D(1,μ) p to Tμ(Sn−2)∗ is an isometry
we obtain

NJ(1,μ) p = √
2

n(n−1)
2 −1 ∏

1≤i< j≤n, (i, j) �=(n,n−1)

|λi − λ j |

= √
2

n(n−1)
2 −1 ∏

1≤i< j≤n−2

|μi − μ j |
n−2∏

i=1

∣∣∣∣μi − μn−1√
2

∣∣∣∣

2

,

which finishes the proof. ��
We now compute the volume of the fiber p−1(A), A ∈ �sm that appears in (3.5).

Lemma 3.2 The volume of the fiber over A ∈ �sm equals |p−1(A)| = 2nπ (n − 2)!.
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Proof Let A = p(C, μ) ∈ �sm. The last coordinate μn−1 is always mapped to the
double eigenvalue λn−1 = λn of A, whereas there are (n − 2)! possibilities to arrange
μ1, . . . , μn−2. For a fixed choice of μ there are |O(1)|n−2|O(2)| ways to choose
C ∈ O(n). Therefore, by (3.3) we obtain |p−1(A)| = |O(1)|n−2|O(2)| (n − 2)! =
2n−2 · 22π · (n − 2)! = 2nπ(n − 2)!. ��

Combining (3.5) with Lemmas 3.1 and 3.2 we write for the normalized volume of
�:

|�|
|SN−3| =

√
2

n(n−1)
2 −1−2n

π(n − 2)!|SN−3|

×
∫

(C,μ)∈O(n)×(Sn−2)∗
|�(μ1, . . . , μn−2)|

n−2∏

i=1

∣∣∣∣μi − μn−1√
2

∣∣∣∣

2

d(C, μ),

where �(μ1, . . . , μn−2) = ∏
1≤i< j≤n−2(μi − μ j ).

The function being integrated is independent of C ∈ O(n). Thus, using Fubini’s
theorem we can perform the integration over the orthogonal group. Furthermore, the
integrand is a homogeneous function of degree (n−2)(n+1)

2 . Passing from spherical
coordinates to spatial coordinates and extending the domain of integration to the
measure-zero set of points with repeated coordinates we obtain

|�|
|SN−3| =

√
2

n(n−1)
2 −1−2n|O(n)|

π (n − 2)! |SN−3| K

×
∫

μ∈Rn−1
|�(μ1, . . . , μn−2)|

n−2∏

i=1

∣∣∣∣μi − μn−1√
2

∣∣∣∣

2

e− ‖μ‖2
2 dμ

where

K =
∫ ∞

0
r

(n−2)(n+1)
2 +n−2e− r2

2 dr = 2
n(n+1)

4 −2 �

(
n(n + 1)

4
− 1

)
.

Let us write u := μn−1√
2

for the double eigenvalue and make a change of variables
from μn−1 to u. Considering the eigenvalues μ1, . . . , μn−2 as the eigenvalues of a
symmetric (n − 2) × (n − 2) matrix Q, by (3.2) we have

|�|
|SN−3| =

√
2

n(n−1)
2 −2n|O(n)| Zn−2

π (n − 2)! |SN−3| K
∫

u∈R
E

Q∼GOE(n−2)
[det(Q − u1)2] e−u2du.

(3.6)
Using formulas (3.1) and (3.3) for Zn−2 and |O(n)| respectively we write

|O(n)| · Zn−2 = 2nπ
n(n+1)

4

∏n
i=1 �( i2 )

· √
2π

n−2
n−2∏

i=1

�(1 + i
2 )

�( 32 )

123



P. Breiding et al.

= 2nπ
n(n+1)

4

∏n
i=1 �( i2 )

· √
2π

n−2
∏n−2

i=1
i
2 �( i2 )

(
√

π

2 )n−2

=
√
2
3n−2

π
n(n+1)

4 (n − 2)!
�( n2 )�( n−1

2 )

= √
2
5n−6

π
n(n+1)

4 −1,

where in the last step the duplication formula for Gamma function �( n2 )�( n−1
2 ) =

22−n√π (n−2)! has been used. Let us recall the formula for the volume of the (N−3)-

dimensional unit sphere: |SN−3| = 2π
N−2
2 /�( N−2

2 ). Recalling that N = n(n+1)
2 we

simplify the constant in (3.6)

√
2

n(n−1)
2 −2n

π (n − 2)! · |O(n)| · Zn−2

|SN−3| · K =
√
2

n(n−1)
2 −2n

π (n − 2)! · √
2
5n−6

π
n(n+1)

4 −1 · �
( N−2

2

)

2π
N−2
2

· 22−
n(n+1)

4

�
(
n(n+1)

4 − 1
) = 2n−2

√
π (n − 2)! .

Plugging this into (3.6) we have

|�|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

u∈R
E

Q∼GOE(n−2)
[det(Q − u1)2] e−u2du. (3.7)

Combining the last formula with Theorem 1.6 whose proof is given in Sect. 4 we
finally derive the claim of Theorem 1.1: |�|

|SN−3| = (n
2

)
.

Remark 6 The proof can be generalized to subsets of � that are defined by an eigen-
value configuration given by a measurable subset of (Sn−2)∗. Such a configuration
only adjusts the domain of integration in (3.7). For instance, consider the subset

(Sn−2)1 = {(μ1, . . . , μn−1) ∈ (Sn−2)∗ | μn−1 < μi for 1 ≤ i ≤ n − 2}.

It is an open semialgebraic subset of (Sn−2)∗ and �1 := p(O(n) × (Sn−2)1) is the
smooth part of the matrices whose two smallest eigenvalues coincide. Following the
proof until (3.7), we get

|�1|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

u∈R
E

Q∼GOE(n−2)
[det(Q − u1)2 1{Q�u1}] e−u2du,

where 1{Q�u1} is the indicator function of Q − u1 being positive definite.

3.3 Multiplicities in a Random Family

In this subsection we prove Theorem 1.2.
The proof is based on the integral geometry formula from Howard (1993, p. 17).

We state it here for the case of submanifolds of the sphere SN−1. If A, B ⊂ SN−1 are
smooth submanifolds of dimensions a and b respectively and a + b ≥ N − 1, then
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1

|O(N )|
∫

O(N )

|A ∩ gB| dg = |Sa+b−N+1| |A|
|Sa |

|B|
|Sb| (3.8)

Note that the intersection A ∩ gB is transverse for a full measure set of g ∈ O(N )

and hence its volume is almost surely defined.
Denote F̂ = π ◦ F : � → SN−1. Then, by assumption, with probability one we

have:
#F−1(C (�)) = # F̂−1(�) = # F̂(�) ∩ �.

Observe also that, since the list ( f1, . . . , fN ) consists of i.i.d. random Gaussian fields,
then for every g ∈ O(N ) the random maps F̂ and g ◦ F̂ have the same distribution
and

E #F−1(C (�)) = E # F̂(�) ∩ � = E #g(F̂(�)) ∩ �

= 1

|O(N )|
∫

O(N )

E #(g(F̂(�)) ∩ �) dg

= E
1

|O(N )|
∫

O(N )

#(g(F̂(�)) ∩ �) dg

= E
1

|O(N )|
∫

O(N )

#(g(F̂(�)) ∩ �sm) dg

= E 2
|F̂(�)|
|S2|

|�|
|SN−3| =

(
n

2

)
E 2

|F̂(�)|
|S2| .

In this derivation we have applied (3.8) to �sm, F̂(�) ⊂ SN−1 (for almost any g ∈
O(N ) the embedded surface g(F̂(�)) intersects � only along �sm). Let us denote
by L = {x1 = x2 = 0} the codimension-two subspace of Sym(n,R) given by the
vanishing of the first two coordinates (in fact: any two coordinates). The conclusion
follows by applying (3.8) again:

E 2
|F̂(�)|
|S2| = E

1

|O(N )|
∫

O(N )

#(g(F̂(�)) ∩ L)dg = E#F−1(L) = E #{ f1 = f2 = 0}.

This finishes the proof. ��

4 The SecondMoment of the Characteristic Polynomial of a GOE
Matrix

In this section we give a proof of Theorem 1.6. Let us first recall some ingredients and
prove some auxiliary results.

Lemma 4.1 Let Pm = 21−m2√
π
m∏m

i=0(2i)! and let Z2m be the normalization con-
stant from (3.1). Then Pm = 21−2m Z2m .
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Proof The formula (3.1) for Z2m reads

Z2m = √
2π

2m
2m∏

i=1

�
( i
2 + 1

)

�
( 3
2

) = (2π)m
m∏

i=1

�
( 2i−1

2 + 1
)
�
( 2i
2 + 1

)

(√
π

2

)2 .

Using the formula �(z)�(z + 1
2 ) = √

π21−2z�(2z) (Spanier et al. 2000, 43:5:7) with
z = i + 1/2 we obtain

Z2m = 23m
m∏

i=1

√
π21−2(i+1/2)�(2(i + 1/2))

= 22m−m2√
π
m

m∏

i=1

(2i)! = 22m−1Pm .

This proves the claim. ��
Recall now that the (physicist’s) Hermite polynomials Hi (x), i = 0, 1, 2, . . . form

a family of orthogonal polynomials on the real linewith respect to themeasure e−x2dx .
They are defined by

Hi (x) = (−1)i ex
2 di

dxi
e−x2 , i ≥ 0

and satisfy
∫

u∈R
Hi (u)Hj (u)e−u2 du =

{
2i i !√π, if i = j

0, else.
(4.1)

A Hermite polynomial is either odd (if the degree is odd) or even (if the degree is
even) function:

Hi (−x) = (−1)i Hi (x); (4.2)

and its derivative satisfies
H ′
i (x) = 2i Hi−1(x); (4.3)

see Spanier et al. (2000, (24:5:1)) and Gradshteyn and Ryzhik (2015, (8.952.1)) for
these properties.

The following proposition is crucial for the proof of Theorem 1.6.

Proposition 4.2 (Second moment of the characteristic polynomial). For a fixed posi-
tive integer k and a fixed u ∈ R the following holds.

1. If k = 2m is even, then

E
Q∼GOE(k)

det(Q − u1)2 = (2m)!
22m

m∑

j=0

2−2 j−1

(2 j)! det X j (u),
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where

X j (u) =
(

H2 j (u) H ′
2 j (u)

H2 j+1(u) − H ′
2 j (u) H ′

2 j+1(u) − H ′′
2 j (u)

)
.

2. If k = 2m + 1 is odd, then

E
Q∼GOE(k)

det(Q − u1)2 =
√

π(2m + 1)!
24m+2 �(m + 3

2 )

m∑

j=0

2−2 j−2

(2 j)! det Y j (u),

where

Y j (u) =
⎛

⎜
⎝

(2 j)!
j ! H2 j (u) H ′

2 j (u)

0 H2 j+1(u) − H ′
2 j (u) H ′

2 j+1(u) − H ′′
2 j (u)

(2m+2)!
(m+1)! H2m+2(u) H ′

2m+2(u)

⎞

⎟
⎠ .

Proof In Section 22 of Mehta (2004) one finds two different formulas for the even
k = 2m and odd k = 2m + 1 cases. We evaluate both separately.

If k = 2m, we have by Mehta (2004, (22.2.38)) that

E det(Q − u1)2 = (2m)! Pm
Z2m

m∑

j=0

22 j−1

(2 j)! det

(
R2 j (u) R′

2 j (u)

R2 j+1(u) R′
2 j+1(u)

)
,

where Pm = 21−m2√
π
m∏m

i=0(2i)! is as in Lemma 4.1, Z2m is the normalization con-
stant (3.1) and where R2 j (u) = 2−2 j H2 j (u) and R2 j+1(u) = 2−(2 j+1)(H2 j+1(u) −
H ′
2 j (u)). Using the multilinearity of the determinant we get

E det(Q − u1)2 = (2m)! Pm
Z2m

m∑

j=0

2−2 j−2

(2 j)! det X j (u).

By Lemma 4.1 we have Pm
Z2m

= 21−2m . Putting everything together yields the first
claim.

In the case k = 2m + 1 we get from Mehta (2004, (22.2.39)) that

E det(Q − u1)2 = (2m + 1)! Pm
Z2m+1

m∑

j=0

22 j−1

(2 j)! det

⎛

⎝
g2 j R2 j (u) R′

2 j (u)

g2 j+1 R2 j+1(u) R′
2 j+1(u)

g2m+2 R2m+2(u) R′
2m+2(u)

⎞

⎠ ,

where Pm , R2 j (u), R2 j+1(u) are as above and

gi =
∫

u∈R
Ri (u) exp(− u2

2 ) du.
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By (4.2), the Hermite polynomial H2 j+1(u) is an odd function. Hence, we have
g2 j+1 = 0. For even indices we use Gradshteyn and Ryzhik (2015, (7.373.2)) to

get g2 j = 2−2 j
√
2π (2 j)!

j ! . By the multilinearity of the determinant:

E det(Q − u1)2 =
√
2π(2m + 1)! Pm
22m+2Z2m+1

m∑

j=0

2−2 j−2

(2 j)! det Y j (u). (4.4)

From (3.1) one obtains Z2m+1 = 2
√
2�(m+ 3

2 ) Z2m , which together with Lemma 4.1
implies

Pm
Z2m+1

= 2−2m

√
2�

(
m + 3

2

) .

Plugging this into (4.4) we conclude that

E det(Q − u1)2 =
√

π(2m + 1)!
24m+2 �

(
m + 3

2

)
m∑

j=0

2−2 j−2

(2 j)! det Y j (u). (4.5)

��
Everything is now ready for the proof of Theorem 1.6

Proof of Theorem 1.6 Due to the nature of Proposition 4.2 we have to make a case
distinction also for this proof.

In the case k = 2m we use the formula from Proposition 4.2 (1) to write

∫

u∈R
E det(Q − u1)2e−u2 du = (2m)!

22m

m∑

j=0

2−2 j−1

(2 j)!
∫

u∈R
det X j (u) du.

By (4.3) we have H ′
i (u) = 2i Hi−1(u). Hence, X j (u) can be written as

(
H2 j (u) 4 j H2 j−1(u)

H2 j+1(u) − 4 j H2 j−1(u) 2(2 j + 1)H2 j (u) − 8 j(2 j − 1)H2 j−2(u)

)
.

From (4.1) we can deduce that
∫

u∈R
det X j (u) du = 2(2 j + 1)22 j (2 j)!√π + 16 j222 j−1(2 j − 1)!√π

= 22 j+1(2 j)!√π(4 j + 1).

From this we see that

m∑

j=0

2−2 j−1

(2 j)!
∫

u∈R
det X j (u) du = √

π

m∑

j=0

(4 j + 1) = √
π (m + 1)(2m + 1). (4.6)
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and hence,

∫

u∈R
E det(Q − u1)2e−u2 du = (2m)!

22m
√

π (m + 1)(2m + 1) = (2m + 2)!
22m+1

√
π.

Plugging back in m = k
2 finishes the proof of the case k = 2m.

In the case k = 2m + 1 we use the formula from Proposition 4.2 (2) to see that

∫

u
E det(Q − u1)2 e−u2 du =

√
π(2m + 1)!

24m+2 �
(
m + 3

2

)
m∑

j=0

2−2 j−2

(2 j)!
∫

u
det Y j (u) e−u2 du.

Note that the top right 2× 2-submatrix of Y j (u) is X j (u), so that det Y j (u) is equal to

(2m + 2)!
(m + 1)! det X j (u) + (2 j)!

j ! det

(
H2 j+1(u) − H ′

2 j (u) H ′
2 j+1(u) − H ′′

2 j (u)

H2m+2(u) H ′
2m+2(u)

)
.

(4.7)
Because taking derivatives of Hermite polynomials decreases the index by one (4.3)
and because the integral over a product of two Hermite polynomials is non-vanishing
only if their indices agree, the integral of the determinant in (4.7) is non-vanishing
only for j = m, in which case it is equal to

∫

u∈R
H2m+1(u)H ′

2m+2(u) e−u2 du = 2(2m + 2)22m+1(2m + 1)!√π,

by (4.1) and (4.3). Hence,

∫

u∈R
det Y j (u) e−u2 du

=
{

(2m+2)!
(m+1)!

∫
u∈R det Xm(u) e−u2 du + (2m)!

m! 22m+2(2m + 2)!√π, if j = m,
(2m+2)!
(m+1)!

∫
u∈R det X j (u) e−u2 du, else.

We find that

m∑

j=0

2−2 j−2

(2 j)!
∫

u
det Y j (u) e−u2 du

= (2m + 2)!
m!

√
π + (2m + 2)!

(m + 1)!
m∑

j=0

2−2 j−2

(2 j)!
∫

u
det X j (u) e−u2 du

= (2m + 2)!
m!

√
π + (2m + 2)!

(m + 1)!
√

π

2
(m + 1)(2m + 1)

=
√

π

2

(2m + 3)!
m! ,
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where we used (4.6) in the second step. It follows that

∫

u∈R
E det(Q − u1)2 e−u2 du =

√
π(2m + 1)!

24m+2 �(m + 3
2 )

√
π

2

(2m + 3)!
m!

= π(2m + 1)!(2m + 3)!
24m+3 �(m + 3

2 )m! .

It is not difficult to verify that the last term is 2−2m−2√π (2m + 3)!. Substituting
2m + 1 = k shows the assertion in this case. ��
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