257 research outputs found

    Molecular Characterization of a Patient Presumed to Have Prader-Willi Syndrome

    Get PDF
    Prader-Willi syndrome (PWS) is caused by the loss of RNA expression from an imprinted region on chromosome 15 that includes SNRPN, SNORD115, and SNORD116. Currently, there are no mouse models that faithfully reflect the human phenotype and investigations rely on human post-mortem material. During molecular characterization of tissue deposited in a public brain bank from a patient diagnosed with Prader-Willi syndrome, we found RNA expression from SNRPN, SNORD115, and SNORD116 which does not support a genetic diagnosis of Prader-Willi syndrome. The patient was a female, Caucasian nursing home resident with history of morbid obesity (BMI 56.3) and mental retardation. She died at age of 56 from pulmonary embolism. SNORD115 and SNORD116 are unexpectedly stable in post mortem tissue and can be used for post-mortem diagnosis. Molecular characterization of PWS tissue donors can confirm the diagnosis and identify those patients that have been misdiagnosed

    Health mindset is associated with anxiety and depression in patients undergoing treatment for breast cancer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156141/2/tbj13765_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156141/1/tbj13765.pd

    Combination of GD2-directed bispecific trifunctional antibody therapy with Pd-1 immune checkpoint blockade induces anti-neuroblastoma immunity in a syngeneic mouse model

    Get PDF
    Introduction: Despite advances in treating high-risk neuroblastoma, 50-60% of patients still suffer relapse, necessitating new treatment options. Bispecific trifunctional antibodies (trAbs) are a promising new class of immunotherapy. TrAbs are heterodimeric IgG-like molecules that bind CD3 and a tumor-associated antigen simultaneously, whereby inducing a TCR-independent anti-cancer T cell response. Moreover, via their functional Fc region they recruit and activate cells of the innate immune system like antigen-presenting cells potentially enhancing induction of adaptive tumor-specific immune responses. Methods: We used the SUREK trAb, which is bispecific for GD2 and murine Cd3. Tumor-blind trAb and the monoclonal ch14.18 antibody were used as controls. A co-culture model of murine dendritic cells (DCs), T cells and a neuroblastoma cell line was established to evaluate the cytotoxic effect and the T cell effector function in vitro. Expression of immune checkpoint molecules on tumor-infiltrating T cells and the induction of an anti-neuroblastoma immune response using a combination of whole cell vaccination and trAb therapy was investigated in a syngeneic immunocompetent neuroblastoma mouse model (NXS2 in A/J background). Finally, vaccinated mice were assessed for the presence of neuroblastoma-directed antibodies. We show that SUREK trAb-mediated effective killing of NXS2 cells in vitro was strictly dependent on the combined presence of DCs and T cells. Results: Using a syngeneic neuroblastoma mouse model, we showed that vaccination with irradiated tumor cells combined with SUREK trAb treatment significantly prolonged survival of tumor challenged mice and partially prevent tumor outgrowth compared to tumor vaccination alone. Treatment led to upregulation of programmed cell death protein 1 (Pd-1) on tumor infiltrating T cells and combination with anti-Pd-1 checkpoint inhibition enhanced the NXS2-directed humoral immune response. Conclusion: Here, we provide first preclinical evidence that a tumor vaccination combined with SUREK trAb therapy induces an endogenous anti-neuroblastoma immune response reducing tumor recurrence. Furthermore, a combination with anti-Pd-1 immune checkpoint blockade might even further improve this promising immunotherapeutic concept in order to prevent relapse in high-risk neuroblastoma patients

    GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma

    Get PDF
    Background: Neuroblastoma is the most common extracranial solid tumor of childhood. Patients with high-risk disease undergo extremely aggressive therapy and nonetheless have cure rates below 50%. Treatment with the ch14.18 monoclonal antibody (dinutuximab beta), directed against the GD2 disialoganglioside, improved 5-year event-free survival in high-risk patients when administered in postconsolidation therapy and was recently implemented in standard therapy. Relapse still occurred in 57% of these patients, necessitating new therapeutic options. Bispecific trifunctional antibodies (trAbs) are IgG-like molecules directed against T cells and cancer surface antigens, redirecting T cells (via their CD3 specificity) and accessory immune cells (via their functioning Fc-fragment) toward tumor cells. We sought proof-of-concept for GD2/CD3-directed trAb efficacy against neuroblastoma. Methods: We used two GD2-specific trAbs differing only in their CD3-binding specificity: EKTOMUN (GD2/human CD3) and SUREK (GD2/mouse Cd3). This allowed trAb evaluation in human and murine experimental settings. Tumor-blind trAb and the ch14.18 antibody were used as controls. A coculture model of human peripheral blood mononuclear cells (PBMCs) and neuroblastoma cell lines was established to evaluate trAb antitumor efficacy by assessing expression of T-cell surface markers for activation, proinflammatory cytokine release and cytotoxicity assays. Characteristics of tumor-infiltrating T cells and response of neuroblastoma metastases to SUREK treatment were investigated in a syngeneic immunocompetent neuroblastoma mouse model mimicking minimal residual disease. Results: We show that EKTOMUN treatment caused effector cell activation and release of proinflammatory cytokines in coculture with neuroblastoma cell lines. Furthermore, EKTOMUN mediated GD2-dependent cytotoxic effects in human neuroblastoma cell lines in coculture with PBMCs, irrespective of the level of target antigen expression. This effect was dependent on the presence of accessory immune cells. Treatment with SUREK reduced the intratumor Cd4/Cd8 ratio and activated tumor infiltrating T cells in vivo. In a minimal residual disease model for neuroblastoma, we demonstrated that single-agent treatment with SUREK strongly reduced or eliminated neuroblastoma metastases in vivo. SUREK as well as EKTOMUN demonstrated superior tumor control compared with the anti-GD2 antibody, ch14.18. Conclusions: Here we provide proof-of-concept for EKTOMUN preclinical efficacy against neuroblastoma, presenting this bispecific trAb as a promising new agent to fight neuroblastoma

    Higher Absolute Lymphocyte Counts Predict Lower Mortality from Early-Stage Triple-Negative Breast Cancer

    Get PDF
    Purpose: Tumor-infiltrating lymphocytes (TIL) in pretreatment biopsies are associated with improved survival in triple-negative breast cancer (TNBC). We investigated whether higher peripheral lymphocyte counts are associated with lower breast cancer–specific mortality (BCM) and overall mortality (OM) in TNBC. Experimental Design: Data on treatments and diagnostic tests from electronic medical records of two health care systems were linked with demographic, clinical, pathologic, and mortality data from the California Cancer Registry. Multivariable regression models adjusted for age, race/ethnicity, socioeconomic status, cancer stage, grade, neoadjuvant/adjuvant chemotherapy use, radiotherapy use, and germline BRCA1/2 mutations were used to evaluate associations between absolute lymphocyte count (ALC), BCM, and OM. For a subgroup with TIL data available, we explored the relationship between TILs and peripheral lymphocyte counts. Results: A total of 1,463 stage I–III TNBC patients were diagnosed from 2000 to 2014; 1,113 (76%) received neoadjuvant/adjuvant chemotherapy within 1 year of diagnosis. Of 759 patients with available ALC data, 481 (63.4%) were ever lymphopenic (minimum ALC <1.0 K/μL). On multivariable analysis, higher minimum ALC, but not absolute neutrophil count, predicted lower OM [HR = 0.23; 95% confidence interval (CI), 0.16–0.35] and BCM (HR = 0.19; CI, 0.11–0.34). Five-year probability of BCM was 15% for patients who were ever lymphopenic versus 4% for those who were not. An exploratory analysis (n = 70) showed a significant association between TILs and higher peripheral lymphocyte counts during neoadjuvant chemotherapy. Conclusions: Higher peripheral lymphocyte counts predicted lower mortality from early-stage, potentially curable TNBC, suggesting that immune function may enhance the effectiveness of early TNBC treatment

    Mitogen‐activated protein kinase activity drives cell trajectories in colorectal cancer

    Get PDF
    In colorectal cancer, oncogenic mutations transform a hierarchically organized and homeostatic epithelium into invasive cancer tissue lacking visible organization. We sought to define transcriptional states of colorectal cancer cells and signals controlling their development by performing single-cell transcriptome analysis of tumors and matched non-cancerous tissues of twelve colorectal cancer patients. We defined patient-overarching colorectal cancer cell clusters characterized by differential activities of oncogenic signaling pathways such as mitogen-activated protein kinase and oncogenic traits such as replication stress. RNA metabolic labeling and assessment of RNA velocity in patient-derived organoids revealed developmental trajectories of colorectal cancer cells organized along a mitogen-activated protein kinase activity gradient. This was in contrast to normal colon organoid cells developing along graded Wnt activity. Experimental targeting of EGFR-BRAF-MEK in cancer organoids affected signaling and gene expression contingent on predictive KRAS/BRAF mutations and induced cell plasticity overriding default developmental trajectories. Our results highlight directional cancer cell development as a driver of non-genetic cancer cell heterogeneity and re-routing of trajectories as a response to targeted therapy

    Structural characteristics and contractual terms of specialist palliative homecare in Germany

    Get PDF
    Background Multi-professional specialist palliative homecare (SPHC) teams care for palliative patients with complex symptoms. In Germany, the SPHC directive regulates care provision, but model contracts for each federal state are heterogeneous regarding staff requirements, cooperation with other healthcare providers, and financial reimbursement. The structural characteristics of SPHC teams also vary. Aim We provide a structured overview of the existing model contracts, as well as a nationwide assessment of SPHC teams and their structural characteristics. Furthermore, we explore whether these characteristics serve to find specifc patterns of SPHC team models, based on empirical data. Methods This study is part of the multi-methods research project “SAVOIR”, funded by the German Innovations Fund. Most model contracts are publicly available. Structural characteristics (e.g. number, professions, and affiliations of team members, and external cooperation) were assessed via an online database (“Wegweiser Hospiz- und Palliativversorgung”) based on voluntary information obtained from SPHC teams. All the data were updated by phone during the assessment process. Data were descriptively analysed regarding staff, cooperation requirements, and reimbursement schemes, while latent class analysis (LCA) was used to identify structural team models. Results Model contracts have heterogeneous contract partners and terms related to staff requirements (number and qualifications) and cooperation with other services. Fourteen reimbursement schemes were available, all combining different payment models. Of the 283 SPHC teams, 196 provided structural characteristics. Teams reported between one and 298 members (mean: 30.3, median: 18), mainly nurses and physicians, while 37.8% had a psychosocial professional as a team member. Most teams were composed of nurses and physicians employed in different settings; for example, staff was employed by the team, in private practices/nursing services, or in hospitals. Latent class analysis identified four structural team models, based on the team size, team members’ affiliation, and care organisation. Conclusion Both the contractual terms and teams’ structural characteristics vary substantially, and this must be considered when analysing patient data from SPHC. The identified patterns of team models can form a starting point from which to analyse different forms of care provision and their impact on care quality

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore