47 research outputs found

    Calcium-Mediated Actin Reset (Caar) Mediates Acute Cell Adaptations

    Get PDF
    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress

    Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease

    Get PDF
    Background: Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. Objectives: To assess effects of increasing PUFA intake on cardiovascular disease (CVD) and all-cause mortality in adults. Search method: We searched CENTRAL, MEDLINE and Embase to April 2017 and ClinicalTrials.com and World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. Selection criteria: We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without CVD that assessed effects over ≥12 months. We included full-text, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, CVD mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. Data collection and analysis: Two authors independently screened titles/abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included studies for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. Main result: We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Twelve included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA. Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 3.4% vs 3.3% in primary prevention, 11.7% vs 11.5% in secondary prevention, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 24 trials in 19290 participants), but probably reduces risk of CVD events from 5.8% to 4.9% in primary prevention, 23.3% to 20.8% in secondary prevention (RR 0.89, 95% CI 0.79 to 1.01, 20 trials in 17,073 participants), both moderate quality evidence. Increasing PUFA may reduce risk of CHD events from 13.4% to 7.1% primary prevention, 14.3% to 13.7% secondary prevention (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants), CHD death (5.2% to 4.4% primary prevention, 6.8% to 6.1% secondary prevention, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) and may slightly reduce stroke risk (2.1% to 1.5% primary prevention, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, I2 31%, 16 trials, 15,107 participants) all low quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality. Event outcomes were all downgraded for indirectness, as most events occurred in men in westernised countries. Increasing PUFA intake reduces total cholesterol (MD -0.12 mmol/L, 95% CI -0.23 to -0.02, I2 79%, 8072 participants, 26 trials) and probably decreases triglycerides (TG, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, I2 50%, 3905 participants, 20 trials), but has little or no effect on HDL (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, I2 0%, 4674 participants, 18 trials) and LDL (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, I2 44%, 3362 participants, 15 trials). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, I2 59%, 7100 participants, 12 trials). Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. Authors' conclusions: Increasing PUFA intake probably reduces risk of CVD events, may reduce risk of CHD events and CHD mortality,and may slightly reduce stroke risk, but has little or no effect on all-cause or CVD mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight
    corecore