1,975 research outputs found
Wet Granular Materials
Most studies on granular physics have focused on dry granular media, with no
liquids between the grains. However, in geology and many real world
applications (e.g., food processing, pharmaceuticals, ceramics, civil
engineering, constructions, and many industrial applications), liquid is
present between the grains. This produces inter-grain cohesion and drastically
modifies the mechanical properties of the granular media (e.g., the surface
angle can be larger than 90 degrees). Here we present a review of the
mechanical properties of wet granular media, with particular emphasis on the
effect of cohesion. We also list several open problems that might motivate
future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics;
tex-style change
Thermal inactivation and conformational lock studies on glucose oxidase
In this study, the dissociative thermal inactivation
and conformational lock theories are applied for the
homodimeric enzyme glucose oxidase (GOD) in order to
analyze its structure. For this purpose, the rate of activity
reduction of glucose oxidase is studied at various temperatures
using b-D-glucose as the substrate by incubation of
enzyme at various temperatures in the wide range between
40 and 70 �C using UV–Vis spectrophotometry. It was
observed that in the two ranges of temperatures, the
enzyme has two different forms. In relatively low temperatures,
the enzyme is in its dimeric state and has normal
activity. In high temperatures, the activity almost disappears
and it aggregates. The above achievements are confirmed
by dynamic light scattering. The experimental
parameter ‘‘n’’ as the obvious number of conformational
locks at the dimer interface of glucose oxidase is obtained
by kinetic data, and the value is near to two. To confirm the
above results, the X-ray crystallography structure of the
enzyme, GOD (pdb, 1gal), was also studied. The secondary
and tertiary structures of the enzyme to track the thermal
inactivation were studied by circular dichroism and
fluorescence spectroscopy, respectively. We proposed a
mechanism model for thermal inactivation of GOD based
on the absence of the monomeric form of the enzyme by
circular dichroism and fluorescence spectroscopy
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Recommended from our members
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector.
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies
Inertio-elastic focusing of bioparticles in microchannels at high throughput
Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001
Association of high risk human papillomavirus and breast cancer : a UK based study
Infection by human papillomaviruses (HPVs) has been implicated in the aetiology of a variety of cancers. Studies evaluating the presence of HPVs in breast cancer (BC) have generated considerable controversy. To date, most studies have focused on the presence of viral DNA in BC; however there are important gaps in evidencing the role of HPV persistence in the invasiveness of BC. While these studies have been conducted in several countries, none, on the presence and biological activity of high risk (HR) HPV in BC has been done in the UK. Hence, we aimed to investigate these gaps by screening a total of 110 fresh breast tissue specimens from UK patients for the presence of twelve HR-HPV types DNA using PCR and Sanger sequencing. Samples positive for HPV-DNA were screened for viral oncoprotein expression using western blot and dot blot. Data obtained showed the presence of HR-HPVs in 42% of breast tissues of which the viral activity was only confirmed in a number of invasive carcinomas (5/26). This finding, the first to report in the UK, suggests that the selective expression of viral oncoprotein in invasive cases may propose a role for HR-HPVs in the development of some types of BC
Determination of EGFR Endocytosis Kinetic by Auto-Regulatory Association of PLD1 with mu 2
Background: Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors. Methodology/Principal Findings: Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that ??2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-??2 interaction requires the binding of PLD1 with phosphatidic acid, its own product. Conclusions/Significance: These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.open3
Dominant features in three-dimensional turbulence structure: comparison of non-uniform accelerating and decelerating flows
The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant κ and to estimate sets of log-law integration constant B r and wake parameter П, where their findings are also compared with values from previous studies. From κ, B r and П findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all κ, B r and П follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter β equations. Their exponential constants are described by quadratic functions in the investigated β range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not
- …
