19 research outputs found

    Lack of Support for the Association between GAD2 Polymorphisms and Severe Human Obesity

    Get PDF
    The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (−243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m(2)). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (−243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase—GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the −243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the −243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83–1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the −243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90–1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the −243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity

    Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    Get PDF
    Background 1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Correction: genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease.

    Get PDF
    [This corrects the article on p. e13950 in vol. 5.]. Background: Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings: We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance: Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P <5 x 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.Peer reviewe

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe

    Distinct Variants at LIN28B Influence Growth in Height from Birth to Adulthood

    Get PDF
    We have studied the largely unknown genetic underpinnings of height growth by using a unique resource of longitudinal childhood height data available in Finnish population cohorts. After applying GWAS mapping of potential genes influencing pubertal height growth followed by further characterization of the genetic effects on complete postnatal growth trajectories, we have identified strong association between variants near LIN28B and pubertal growth (rs7759938; female p = 4.0 × 10?9, male p = 1.5 × 10?4, combined p = 5.0 × 10?11, n = 5038). Analysis of growth during early puberty confirmed an effect on the timing of the growth spurt. Correlated SNPs have previously been implicated as influencing both adult stature and age at menarche, the same alleles associating with taller height and later age of menarche in other studies as with later pubertal growth here. Additionally, a partially correlated LIN28B SNP, rs314277, has been associated previously with final height. Testing both rs7759938 and rs314277 (pairwise r2 = 0.29) for independent effects on postnatal growth in 8903 subjects indicated that the pubertal timing-associated marker rs7759938 affects prepubertal growth in females (p = 7 × 10?5) and final height in males (p = 5 × 10?4), whereas rs314277 has sex-specific effects on growth (p for interaction = 0.005) that were distinct from those observed at rs7759938. In conclusion, partially correlated variants at LIN28B tag distinctive, complex, and sex-specific height-growth-regulating effects, influencing the entire period of postnatal growth. These findings imply a critical role for LIN28B in the regulation of human growth.<br/
    corecore