8 research outputs found

    Adaptive Adjustable Tricycle

    Get PDF
    As a part of the Cal Poly Mechanical Engineering curriculum, all students must take part in a three quarter long senior design project. Students are presented with existing problems, select a project, and then apply the knowledge they have gained throughout their academic career to design and build a solution. The intent behind this project is to create an experience that is similar to an engineering project in industry, by applying engineering and teamwork skills to solve a problem. Team Trikeceratops’ mission was to develop an adaptive adjustable tricycle to be used in the Special Education Department of the Buena Park School District for recreational use and physical therapy. The design team was comprised of four Cal Poly mechanical engineering students and a kinesiology student-consultant who worked through three primary design phases over the course of nine months to develop a functional prototype. These phases included ideation and conception, detailed design, and manufacturing, all of which have different requirements that call for a variety of skill sets. During ideation and conception, Team Trikeceratops developed lists of requirements from sponsor input, divided the project into components, generated ideas, and refined the options to reach an overall conceptual design. This initial phase was also essential in developing a team mentality and establishing the basic rules and guidelines by which the team would operate. At the end of ideation and conception, the team had developed a full theoretical design that would meet the customer requirements. Detailed design was the second phase wherein the students took the conceptual design and applied engineering knowledge to clearly define the solution. In this phase, most of the more stereotypical engineering occurred. Students sized tubing for the frame, performed calculations and analysis on components, created manufacturing drawings, identified part numbers for acquisition, and began contacting companies for parts and services. At the end of detailed design, the team had a bill of materials, manufacturing plan, contact information for suppliers, and fully dimensioned drawings for manufacturing custom parts. The third phase of product development was manufacturing and testing. Students cut, notched, welded, and machined various custom components while simultaneously overcoming problems of improper sizing and extended lead times on ordered materials. Following this process, the students tested the tricycle to ensure that it met the customer requirements set forth in the Design Verification Plan and Report (DVPR). At the end of this phase a functioning prototype was completed and staged for delivery and the final report was compiled. This remainder of this report details Team Trikeceratops’ progress from initial concept generation to prototype realization and explores each part of the aforementioned engineering design process in depth

    Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies

    Get PDF
    Interleukin 17 (IL-17) is a proinflammatory cytokine that has been the focus of intensive research because of its crucial role in the pathogenesis of different diseases across many medical specialties. In this context, the present review in which a panel of 13 experts in immunology, dermatology, rheumatology, neurology, hematology, infectious diseases, hepatology, cardiology, ophthalmology and oncology have been involved, puts in common the mechanisms through which IL-17 is considered a molecular target for the development of novel biological therapies in these different fields. A comprehensive review of the literature and analysis of the most outstanding evidence have provided the basis for discussing the most relevant data related to IL-17A blocking agents for the treatment of different disorders, such as psoriasis, psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, cardiovascular disorders, non alcoholic fatty liver disease, multiple sclerosis, inflammatory bowel disease, uveitis, hematological and solid cancer. Current controversies are presented giving an opening line for future research.This work was supported by Novartis Pharmaceuticals Spain

    Chronic Dicer1 deficiency promotes atrophic and neovascular outer retinal pathologies in mice.

    No full text
    Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization

    Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    No full text

    Annual Selected Bibliography

    No full text
    corecore