83 research outputs found

    Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study

    Get PDF
    Many middle-aged patients are affected by localized cartilage defects that are neither appropriate for primary, nor repeat biological repair methods, nor for conventional arthroplasty. This in vitro study aims to determine the peak contact pressure in the tibiofemoral joint with a partial femoral resurfacing device (HemiCAP®, Arthrosurface Inc., Franklin, MA, USA). Peak contact pressure was determined in eight fresh-frozen cadaveric specimens using a Tekscan sensor placed in the medial compartment above the menisci. A closed loop robotic knee simulator was used to test each knee in static stance positions (5°/15°/30°/45°) with body weight ground reaction force (GRF), 30° flexion with twice the body weight (2tBW) GRF and dynamic knee-bending cycles with body weight GRF. The ground reaction force was adjusted to the living body weight of the cadaver donor and maintained throughout all cycles. Each specimen was tested under four different conditions: Untreated, flush HemiCAP® implantation, 1-mm proud implantation and 20-mm defect. A paired sampled t test to compare means (significance, P ≤ 0.05) was used for statistical analysis. On average, no statistically significant differences were found in any testing condition comparing the normal knee with flush device implantation. With the 1-mm proud implant, statistically significant increase of peak contact pressures of 217% (5° stance), 99% (dynamic knee bending) and 90% (30° stance with 2tBW) compared to the untreated condition was seen. No significant increase of peak contact pressure was evaluated with the 20-mm defect. The data suggests that resurfacing with the HemiCAP® does not lead to increased peak contact pressure with flush implantation. However, elevated implantation results in increased peak contact pressure and might be biomechanically disadvantageous in an in vivo application

    Lipid rafts: linking prion protein to zinc transport and amyloid-β toxicity in Alzheimer's disease

    Get PDF
    Dysregulation of neuronal zinc homeostasis plays a major role in many processes related to brain aging and neurodegenerative diseases, including Alzheimer's disease (AD). Yet, despite the critical role of zinc in neuronal function, the cellular mechanisms underpinning its homeostatic control are far from clear. We reported that the cellular prion protein (PrPC) is involved in the uptake of zinc into neurons. This PrPC-mediated zinc influx required the metal-binding octapeptide repeats in PrPC and the presence of the zinc permeable AMPA channel with which PrPC directly interacted. Together with the observation that PrPC is evolutionarily related to the ZIP family of zinc transporters, these studies indicate that PrPC plays a key role in neuronal zinc homeostasis. Therefore, PrPC could contribute to cognitive health and protect against age-related zinc dyshomeostasis but PrPC has also been identified as a receptor for amyloid-β oligomers which accumulate in the brains of those with AD. We propose that the different roles that PrPC has are due to its interaction with different ligands and/or co-receptors in lipid raft-based signaling/transport complexes

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    The cellular Prion Protein: a player in immunological quiescence

    Get PDF
    Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrPC) remains elusive. Here, we present a novel concept suggesting that PrPC contributes to immunological quiescence in addition to cell protection. PrPC is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrPC serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here we review studies of PrPC physiology in view of this concept

    Investigating the cell biological mechanisms regulated by the cellular prion protein

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) are rare, uniformly fatal neurodegenerative disorders that can affect many mammalian species, including humans. A hallmark of these diseases is the conversion of cellular prion protein (PrPC) into an abnormally folded form. This misfolded PrPC is infectious, since it can provide a template for pathogenic conversion of PrPC in a new host. In addition to any toxicity of the misfolded protein, loss of normal PrPC function could be involved in the neurodegenerative processes. However, the physiological role of PrPC is still poorly understood and this project has aimed to address that lack of knowledge. Out of the many putative functions ascribed to PrPC, the most commonly proposed is that it protects cells from stress. In contrast, I have found that stable transfection of the prion protein gene into SH-SY5Y neuroblastoma cells increases cell death in response to serum removal from the culture medium. Following treatment with several chemical toxins, two out of four stably transfected clones did, generally, display greater viability than untransfected cells that do not express detectable levels of PrPC. However, knockdown of PrPC expression by RNA interference had no effect on this stress resistance, indicating that it may not have been mediated directly by PrPC. Given the lack of robust stress protection afforded by PrPC transfection, proteomic analyses of the cells were carried out to identify alternative processes that were perturbed as a result of PrPC expression. The results obtained suggested roles for PrPC in cytoskeletal organisation and cell cycle regulation. Various proteins involved in cytoskeletal organisation were confirmed by western blotting to be differentially expressed in some or all of the stably transfected clones. Additionally, the expression changes to proteins involved in cell cycle regulation resulted in slower proliferation of the clones compared with untransfected cells, a difference that was reduced following RNA interference-mediated knockdown of PrPC. Taken together, these data suggested that specific growth factor-activated pathways were differentially regulated in the stably transfected clones. One candidate pathway was nerve growth factor (NGF) signalling, which promotes neuronal survival and differentiation as well as regulating various processes outside of the nervous system. PrPC-transfection resulted in altered expression of receptors for NGF, suggesting that the stably transfected clones were, indeed, responding differently to NGF stimulation. However, the molecular mechanism responsible for these expression changes remains to be determined, since co-immunoprecipitation experiments did not identify any physical interactions between PrPC and the NGF receptors. Nonetheless, a role for PrPC in modulating NGF signalling has the potential to explain many of the diverse phenotypic observations in PrPC-null mice and might indicate that loss of PrPC function is an important part of TSE pathogenesis

    Surgical exploration and discovery program: inaugural involvement of otolaryngology – head and neck surgery

    No full text
    Abstract Background There is significant variability in undergraduate Otolaryngology – Head and Neck Surgery (OTOHNS) curricula across Canadian medical schools. As part of an extracurricular program delivered jointly with other surgical specialties, the Surgical Exploration and Discovery (SEAD) program presents an opportunity for medical students to experience OTOHNS. The purpose of this study is to review the participation and outcome of OTOHNS in the SEAD program. Methods The SEAD program is a two-week, 80-hour, structured curriculum that exposes first-year medical students to nine surgical specialties across three domains: (1) operating room observerships, (2) career discussions with surgeons, and (3) simulation workshops. During observerships students watched or assisted in surgical cases over a 4-hour period. The one-hour career discussion provided a specialty overview and time for students’ questions. The simulation included four stations, each run by a surgeon or resident; students rotated in small groups to each station: epistaxis, peritonsillar abscess, tracheostomy, and ear examination. Participants completed questionnaires before and after the program to evaluate changes in career interests; self-assessment of knowledge and skills was also completed following each simulation. Baseline and final evaluations were compared using the Wilcoxon Signed-Rank test. Results SEAD participants showed significant improvement in knowledge and confidence in surgical skills specific to OTOHNS. The greatest knowledge gain was in ear examination, and greatest gain in confidence was in draining peritonsillar abscesses. The OTOHNS session received a mean rating of 4.8 on a 5-point scale and was the most popular surgical specialty participating in the program. Eight of the 18 participants were interested in OTOHNS as a career at baseline; over the course of the program, two students gained interest and two lost interest in OTOHNS as a potential career path, demonstrating the potential for helping students refine their career choice. Conclusions Participants were able to develop OTOHNS knowledge and surgical skills as well as refine their perspective on OTOHNS as a potential career option. These findings demonstrate the potential benefits of OTOHNS departments/divisions implementing observerships, simulations, and career information sessions in pre-clerkship medical education, either in the context of SEAD or as an independent initiative
    corecore