34 research outputs found

    Emergency General Surgery:Predicting Morbidity and Mortality in the Geriatric Population

    Get PDF
    Introduction  Numerous scoring systems have been created to predict the risk of morbidity and mortality in patients undergoing emergency general surgery (EGS). In this article, we compared the different scoring systems utilized at Humanitas Research Hospital and analyzed which one performed the best when assessing geriatric patients (>65 years of age). The scoring systems that were utilized were the APACHE II (Acute Physiology and Chronic Health Evaluation II), ASA (American Society of Anesthesiologists), ACS-NSQIP (American College of Surgeons-National Surgical Quality Improvement Program), Clinical Frailty Score, and the Clavien–Dindo classification as control. Materials and Methods  We compiled a database consisting of all patients over the age of 65 who underwent EGS in a consecutive 24-month period between January 1, 2017 and December 31, 2018. We used the biostatistical program “Stata Version 15” to analyze our results. Results  We found 213 patients who matched our inclusion criteria. Regarding death, we found that the ACS-NSQIP death calculator performed the best with an area under the curve of 0.9017 (odds ratio: 1.09; 95% confidence interval: 1.06–1.12). The APACHE II score had the lowest discriminator when predicting death. Considering short-term complications, the Clavien–Dindo classification scored highly, while both the APACHE II score and Clinical Frailty Score produced the lowest results. Conclusion  The results obtained from our research showed that scoring systems and classifications produced different results depending on whether they were used to predict deaths or short-term complications among geriatric patients undergoing EGS

    Effects of Model-Based Iterative Reconstruction in Low-Dose Paranasal Computed Tomography: A Comparison with Filtered Back Projection and Hybrid Iterative Reconstruction

    Get PDF
    Iterative reconstruction (IR) improves image quality compared with filtered back projection (FBP). This study investigated the usefulness of model-based IR (forward-projected model-based iterative reconstruction solution [FIRST]) in comparison with FBP and hybrid IR (adaptive iterative dose reduction three-dimensional processing [AIDR 3D]) in low-dose paranasal CT. Twenty-four patients with paranasal sinusitis who underwent standard-dose CT (120 kV) and low-dose CT (100 kV) scanning before and after medical treatment were enrolled. Standard-dose CT scans were reconstructed with FBP (FBP120), and low-dose CT scans with FBP (FBP100), AIDR 3D, and FIRST. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in three anatomical structures and effective doses were compared using Mann–Whitney U test. Two radiologists independently evaluated the visibility of 16 anatomical structures, overall image quality, and artifacts. Effective doses in lowdose CT were significantly reduced compared with those in standard-dose CT (0.24 vs 0.43 mSv, p<0.001). FIRST achieved significantly higher SNR (p<0.01, respectively) and CNR (p<0.001, respectively) of evaluated structures and significant improvement in overall image quality (p<0.001), artifacts (p<0.001), and visibility related to muscles (p<0.05) compared to FBP120, FBP100, and AIDR 3D. FIRST allowed radiation-dose reduction, while maintaining objective and subjective image quality in low-dose paranasal CT

    European Society of Trauma and Emergency Surgery (ESTES) recommendations for trauma and emergency surgery preparation during times of COVID-19 infection.

    Get PDF
    A series of recommendations regarding hospital perioperative preparation for the COVID-19 pandemic were compiled to inform surgeons worldwide on how to provide emergency surgery and trauma care during enduring times.The recommendations are divided into eight domains: (1) General recommendation for surgical services; (2) Emergency Surgery for critically ill COVID-19 positive or suspected patients -Preoperative planning and case selection; (3) Operating Room setup; (4) patient transport to the OR; (5) Surgical staff preparation; (6) Anesthesia considerations; (7) Surgical approach; and (8) Case Completion.The European Society of Emergency Surgery board endorsed these recommendations

    Postoperative pain management in non-traumatic emergency general surgery : WSES-GAIS-SIAARTI-AAST guidelines

    Get PDF
    Background Non-traumatic emergency general surgery involves a heterogeneous population that may present with several underlying diseases. Timeous emergency surgical treatment should be supplemented with high-quality perioperative care, ideally performed by multidisciplinary teams trained to identify and handle complex postoperative courses. Uncontrolled or poorly controlled acute postoperative pain may result in significant complications. While pain management after elective surgery has been standardized in perioperative pathways, the traditional perioperative treatment of patients undergoing emergency surgery is often a haphazard practice. The present recommended pain management guidelines are for pain management after non-traumatic emergency surgical intervention. It is meant to provide clinicians a list of indications to prescribe the optimal analgesics even in the absence of a multidisciplinary pain team. Material and methods An international expert panel discussed the different issues in subsequent rounds. Four international recognized scientific societies: World Society of Emergency Surgery (WSES), Global Alliance for Infection in Surgery (GAIS), Italian Society of Anesthesia, Analgesia Intensive Care (SIAARTI), and American Association for the Surgery of Trauma (AAST), endorsed the project and approved the final manuscript. Conclusion Dealing with acute postoperative pain in the emergency abdominal surgery setting is complex, requires special attention, and should be multidisciplinary. Several tools are available, and their combination is mandatory whenever is possible. Analgesic approach to the various situations and conditions should be patient based and tailored according to procedure, pathology, age, response, and available expertise. A better understanding of the patho-mechanisms of postoperative pain for short- and long-term outcomes is necessary to improve prophylactic and treatment strategies.Peer reviewe

    Postoperative pain management in non-traumatic emergency general surgery: WSES-GAIS-SIAARTI-AAST guidelines

    Get PDF
    Background Non-traumatic emergency general surgery involves a heterogeneous population that may present with several underlying diseases. Timeous emergency surgical treatment should be supplemented with high-quality perioperative care, ideally performed by multidisciplinary teams trained to identify and handle complex postoperative courses. Uncontrolled or poorly controlled acute postoperative pain may result in significant complications. While pain management after elective surgery has been standardized in perioperative pathways, the traditional perioperative treatment of patients undergoing emergency surgery is often a haphazard practice. The present recommended pain management guidelines are for pain management after non-traumatic emergency surgical intervention. It is meant to provide clinicians a list of indications to prescribe the optimal analgesics even in the absence of a multidisciplinary pain team. Material and methods An international expert panel discussed the different issues in subsequent rounds. Four international recognized scientific societies: World Society of Emergency Surgery (WSES), Global Alliance for Infection in Surgery (GAIS), Italian Society of Anesthesia, Analgesia Intensive Care (SIAARTI), and American Association for the Surgery of Trauma (AAST), endorsed the project and approved the final manuscript. Conclusion Dealing with acute postoperative pain in the emergency abdominal surgery setting is complex, requires special attention, and should be multidisciplinary. Several tools are available, and their combination is mandatory whenever is possible. Analgesic approach to the various situations and conditions should be patient based and tailored according to procedure, pathology, age, response, and available expertise. A better understanding of the patho-mechanisms of postoperative pain for short- and long-term outcomes is necessary to improve prophylactic and treatment strategies

    Diversity and ethics in trauma and acute care surgery teams: results from an international survey

    Get PDF
    Background Investigating the context of trauma and acute care surgery, the article aims at understanding the factors that can enhance some ethical aspects, namely the importance of patient consent, the perceptiveness of the ethical role of the trauma leader, and the perceived importance of ethics as an educational subject. Methods The article employs an international questionnaire promoted by the World Society of Emergency Surgery. Results Through the analysis of 402 fully filled questionnaires by surgeons from 72 different countries, the three main ethical topics are investigated through the lens of gender, membership of an academic or non-academic institution, an official trauma team, and a diverse group. In general terms, results highlight greater attention paid by surgeons belonging to academic institutions, official trauma teams, and diverse groups. Conclusions Our results underline that some organizational factors (e.g., the fact that the team belongs to a university context or is more diverse) might lead to the development of a higher sensibility on ethical matters. Embracing cultural diversity forces trauma teams to deal with different mindsets. Organizations should, therefore, consider those elements in defining their organizational procedures. Level of evidence Trauma and acute care teams work under tremendous pressure and complex circumstances, with their members needing to make ethical decisions quickly. The international survey allowed to shed light on how team assembly decisions might represent an opportunity to coordinate team member actions and increase performance

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Updates in laparoscopic surgery for perforated peptic ulcer disease: state of the art and future perspectives

    No full text
    Peptic ulcer disease (PUD), which affects 4 million people worldwide annually, has a perforation rate of between 2% to 14%. Perforated peptic ulcer (PPU) carries a substantial morbidity and mortality. Surgical repair remains the treatment of choice for a PPU. This literature review includes the latest updates in laparoscopic repair techniques for a PPU and also focuses on its causation, clinical features, diagnostic workup, laparoscopic and open surgical techniques, outcomes, and future perspectives. An extensive review of the literature was performed, and the most recent meta-analyses and reviews concerning the topic were considered. No substantial differences were found in postoperative mortality between the open and laparoscopic approaches for patients with a PPU. Furthermore, a laparoscopic repair lead to statistically significantly less postoperative pain and carried a lower risk of wound infection. Hence, a laparoscopic repair is justified, where situationally appropriate, as the treatment of choice
    corecore