45 research outputs found

    Terrestrial Biosphere Model Performance for Inter-Annual Variability of Land-Atmosphere CO2 Exchange

    Get PDF
    Interannual variability in biosphere-atmosphere exchange of CO2 is driven by a diverse range of biotic and abiotic factors. Replicating this variability thus represents the ‘acid test’ for terrestrial biosphere models. Although such models are commonly used to project responses to both normal and anomalous variability in climate, they are rarely tested explicitly against inter-annual variability in observations. Herein, using standardized data from the North American Carbon Program, we assess the performance of 16 terrestrial biosphere models and 3 remote sensing products against long-term measurements of biosphere-atmosphere CO2 exchange made with eddy-covariance flux towers at 11 forested sites in North America. Instead of focusing on model-data agreement we take a systematic, variability-oriented approach and show that although the models tend to reproduce the mean magnitude of the observed annual flux variability, they fail to reproduce the timing. Large biases in modeled annual means are evident for all models. Observed interannual variability is found to commonly be on the order of magnitude of the mean fluxes. None of the models consistently reproduce observed interannual variability within measurement uncertainty. Underrepresentation of variability in spring phenology, soil thaw and snowpack melting, and difficulties in reproducing the lagged response to extreme climatic events are identified as systematic errors, common to all models included in this study.Organismic and Evolutionary Biolog

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Prediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest

    No full text
    Information on foliar macronutrients is required in order to understand plant physiological and ecosystem processes such as photosynthesis, nutrient cycling, respiration and cell wall formation. The ability to measure, model and map foliar macronutrients (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) at the forest canopy level provides information on the spatial patterns of ecosystem processes (e.g., carbon exchange) and provides insight on forest condition and stress. Imaging spectroscopy (IS) has been used particularly for modeling N, using airborne and satellite imagery mostly in temperate and tropical forests. However, there has been very little research conducted at these scales to model P, K, Ca, and Mg and few studies have focused on boreal forests. We report results of a study of macronutrient modeling using spaceborne IS and airborne light detection and ranging (LiDAR) data for a mixedwood boreal forest canopy in northern Ontario, Canada. Models incorporating Hyperion data explained approximately 90% of the variation in canopy concentrations of N, P, and Mg; whereas the inclusion of LiDAR data significantly improved the prediction of canopy concentration of Ca (R2 = 0.80). The combined used of IS and LiDAR data significantly improved the prediction accuracy of canopy Ca and K concentration but decreased the prediction accuracy of canopy P concentration. The results indicate that the variability of macronutrient concentration due to interspecific and functional type differences at the site provides the basis for the relationship observed between the remote sensing measurements (i.e., IS and LiDAR) and macronutrient concentration. Crown closure and canopy height are the structural metrics that establish the connection between macronutrient concentration and IS and LiDAR data, respectively. The spatial distribution of macronutrient concentration at the canopy scale mimics functional type distribution at the site. The ability to predict canopy N, P, K, Ca and Mg in this study using only IS, only LiDAR or their combination demonstrates the excellent potential for mapping these macronutrients at canopy scales across larger geographic areas into the next decade with the launch of new IS satellite missions and by using spaceborne LiDAR data
    corecore