34 research outputs found

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα;ΘðfÞ < ð0.1–56Þ × 10−8 erg cm−2 s−1 Hz−1ðf=25 HzÞα−1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ωðf; ΘÞ < ð0.39–7.6Þ × 10−8 sr−1ðf=25 HzÞα depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0 < ð6.7; 5.5; and 7.0Þ × 10−25, respectively, at the most sensitive detector frequencies between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1  M⊙ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6−0.7+3.2  M⊙ and 84.4−11.1+15.8  M⊙ and range in distance between 320−110+120 and 2840−1360+1400  Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840  Gpc−3 y−1 for binary neutron stars and 9.7−101  Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610  Gpc−3 y−1

    Properties of the Binary Neutron Star Merger GW170817

    Get PDF
    On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16  deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89  M⊙ when allowing for large component spins, and to lie between 1.16 and 1.60  M⊙ (with a total mass 2.73−0.01+0.04  M⊙) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300−230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal

    Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data

    Get PDF
    We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25–2000Hz2000\,\mathrm{Hz}, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175Hz175\,\mathrm{Hz}, with comparable limits set across the most sensitive frequency range from 100 to 200Hz200\,\mathrm{Hz}. At this frequency, the 95% upper limit on the signal amplitude h 0 is 2.3×10252.3\times {10}^{-25} marginalized over the unknown inclination angle of the neutron star's spin, and 8.0×10268.0\times {10}^{-26} assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3–4 stronger than those set by other analyses of the same data, and a factor of ~7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of 100Hz100\,\mathrm{Hz}, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    Get PDF
    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/root Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90\% confidence upper limits of 1.8 x 10(-25). At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 x 10(-24). At 55 Hz we can exclude sources with ellipticities greater than 10(-5) within 100 pc of Earth with fiducial value of the principal moment of inertia of 10(38) kg m(2)

    Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO???s First Observing Run

    Get PDF
    We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M-circle dot-1.0 M-circle dot using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning (0.2 M-circle dot, 0.2 M-circle dot) ultracompact binaries to be less than 1.0 x 10(6) Gpc(-3) yr(-1) and the coalescence rate of a similar distribution of (1.0 M-circle dot, 1.0 M-circle dot) ultracompact binaries to be less than 1.9 x Gpc(-3) yr(-1) (at 90% confidence). Neither black holes nor neutron stars are expected to form below similar to 1 M-circle dot through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early Universe and contribute to the dark matter density. The interpretation of our constraints in the primordial black hole dark matter paradigm is highly model dependent; however, under a particular primordial black hole binary formation scenario we constrain monochromatic primordial black hole populations of 0.2 M-circle dot to be less than 33% of the total dark matter density and monochromatic populations of 1.0 M-circle dot to be less than 5% of the dark matter density. The latter strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations
    corecore