80 research outputs found

    Lack of school requirements and clinician recommendations for human papillomavirus vaccination

    Get PDF
    Background: A strong recommendation from a clinician is one of the best predictors of human papillomavirus (HPV) vaccination among adolescents, yet many clinicians do not provide effective recommendations. The objective of this study was to understand how the lack of school entry requirements for HPV vaccination influences clinicians’ recommendations. Design and Methods: Semi-structured interviews with a purposive sample of 32 clinicians were conducted in 2015 in Connecticut USA. Data were analysed using an iterative thematic approach in 2016-2017. Results: Many clinicians described presenting HPV vaccination as optional or non-urgent because it is not required for school entry. This was noted to be different from how other required vaccines were discussed. Even strong recommendations were often qualified by statements about the lack of requirements. Furthermore, lack of requirements was often raised initially by clinicians and not by parents. Many clinicians agreed that requirements would simplify the recommendation, but that parents may not agree with requirements. Personal opinions about school entry requirements were mixed. Conclusions: The current lack of school entry requirements for HPV vaccination is an important influence on clinicians’ recommendations that are often framed as optional or non-urgent. Efforts are needed to strengthen the quality of clinicians’ recommendations in a way that remains strong and focused on disease prevention yet uncoupled from the lack of requirements that may encourage delays. Additionally, greater support for requirements among clinicians may be needed to successfully enact requirements in the future

    Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus

    Get PDF
    abstract: Background We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates. Methods We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Bac light LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity. Results Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates. Conclusions These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells.The electronic version of this article is the complete one and can be found online at: http://ann-clinmicrob.biomedcentral.com/articles/10.1186/1476-0711-9-2

    Apolipoprotein E epsilon 4 (APOE-ε4) genotype is associated with decreased 6-month verbal memory performance after mild traumatic brain injury

    Get PDF
    Introduction: The apolipoprotein E (APOE) ε4 allele associates with memory impairment in neurodegenerative diseases. Its association with memory after mild traumatic brain injury (mTBI) is unclear. Methods: mTBI patients (Glasgow Coma Scale score 13–15, no neurosurgical intervention, extracranial Abbreviated Injury Scale score ≤1) aged ≥18 years with APOE genotyping results were extracted from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study. Cohorts determined by APOE-ε4(+/−) were assessed for associations with 6-month verbal memory, measured by California Verbal Learning Test, Second Edition (CVLT-II) subscales: Immediate Recall Trials 1–5 (IRT), Short-Delay Free Recall (SDFR), Short-Delay Cued Recall (SDCR), Long-Delay F

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe
    corecore