11 research outputs found

    Immunological characterization of a γδ T-cell stimulatory ligand on autologous monocytes

    No full text
    Bovine γδ T cells are stimulated to proliferate by autologous monocytes. This is referred to as the autologous mixed leucocyte reaction (AMLR). It has been shown previously that the stimulatory component is constitutively expressed on the monocyte plasma membrane and is a protein or has a protein moiety. Here we showed that γδ T-cell responses to the monocytes requires interaction with the T-cell receptor because Fab(1) fragments of a monoclonal antibody (mAb) that reacts with the δ chain of the T-cell receptor blocked proliferation in the AMLR. Monocyte molecules involved in stimulation were also characterized further by biochemical and immunological methods. A mAb, named M5, was generated by immunizing mice with bovine monocytes and shown to block the ability of monocytes to stimulate in the AMLR. Treatment of monocytes or monocyte membranes with high salt, chelating agents or phospholipase C did not affect their ability to stimulate γδ T-cell proliferation or reactivity with mAb M5 indicating the ability of monocytes to stimulate does not involve peripheral membrane components or a glycosyl-phosphatidylinsositol (GPI)-anchored components. Hence it was concluded that the stimulation occurred as a result of intergral membrane proteins including that recognized by mAb M5. The ligand for mAb M5 was on all bovine monocytes and to a lower level on granulocytes but not on lymphocytes. MAb M5 also reacted with sheep monocytes but not with human monocytes or murine macrophages, in agreement with a previous reports that sheep monocytes but not human or mouse mononuclear phagocytes have the capacity to stimulate bovine γδ T cells in in vitro cultures. The level of expression of the M5 ligand was not altered by γ-irradiation or culture of monocytes with lipopolysaccharide but it was decreased following culture with interferon-γ-containing cell culture supernatants

    Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    No full text
    Pattern recognition receptors (PRR), such as NOD-like receptors (NLRs), sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC) act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation
    corecore