52 research outputs found
The role of growth factors in human sperm parameters: A review of in vitro studies
In vitro sperm preparation/incubation and cryopreservation are associated with oxidative stress as the main cause of sperm damage, and different strategies are used to improve sperm quality in in vitro conditions to treat male infertility. Growth factors (GFs) are biological molecules that play different roles in various cellular processes such as growth, proliferation, and differentiation. Many studies have shown that GFs and their receptors are expressed in the male reproductive system. In vitro supplementation of GFs to improve sperm parameters has yielded useful results. There are many studies on the effects of GFs on sperm quality improvement and subsequent assisted reproductive technology results. Hence, this study will review the in vitro results of various GFs including brain-derived neurotrophic factor, nerve growth factor, fibroblast growth factor, insulin-like growth factor I, and vascular endothelial growth factor to improve sperm quality.
Key words: Growth factors, Sperm, ROS, Cryopreservation, In vitro
High-throughput selection of sperm with improved DNA integrity and rapidly progressive motility using a butterfly-shaped chip compared to the swim-up method
Microfluidics provides unique opportunities for the high throughput selection of motile sperm with improved DNA integrity for assisted reproductive technologies (ARTs). Here, through a parametric study on dimensions and geometrical angles, a butterfly-shaped chip (BSC) is presented to isolate sperm with high progressive motility and intact DNA at a separation rate of 1125 sperm per minute. Using finite element simulations, the flow field and shear rates in the device were optimized to leverage the inherent motility characteristics of sperm for maximum selection throughput. The device incorporates a triple selection mechanism in series, initially activating sperm rheotaxis by rotation against the semen flow, penetrating the counter buffer flow and swimming against the direction of the buffer flow, leaving dead cells and debris behind, and subsequently leveraging boundary-following behavior to direct progressively motile sperm to swim along the walls and reach the device outlet. The device selects over 4.1 million sperm per mL within 20 minutes, with 29.2%, 68.2%, and 57.3% improvement in total motility, DNA integrity, and velocity parameter (VCL), as compared with the conventional swim-up method, respectively. Overall, the performance of the device to separate sperm with approximately 95.9% total motility, 97.8% viability, and 96.6% DNA integrity at high concentrations demonstrates its potential for enhancing the efficiency of conventional treatment methods.</p
The exact synchronization timing between the cleavage embryo stage and duration of progesterone therapy-improved pregnancy rates in frozen embryo transfer cycles: A cross-sectional study
Background: Synchronization between the embryonic stage and the uterine endometrial lining is important in the outcomes of the vitrified-warmed embryo transfer (ET) cycles.
Objective: The aim was to investigate the effect of the exact synchronization between the cleavage stage of embryos and the duration of progesterone administration on the improvement of clinical outcomes in frozen embryo transfer (FET) cycles.
Materials and Methods: 312 FET cycles were categorized into two groups: (A) day- 3 ET after three days of progesterone administration (n = 177) and (B) day-2 or -4 ET after three days of progesterone administration (n = 135). Group B was further divided into two subgroups: B1: day-2 ET cycles, that the stage of embryos were less than the administrated progesterone and B2: day-4 ET cycles, that the stage of embryos were more than the administrated progesterone. The clinical outcome measures were compared between the groups.
Results: The pregnancy outcomes between groups A and B showed a significant differences in the chemical (40.1% vs 27.4%; p = 0.010) and clinical pregnancies (32.8% vs 22.2%; p = 0.040), respectively. The rate of miscarriage tended to be higher and live birth rate tended to be lower in group B than in group A. Also, significantly higher rates were noted in chemical pregnancy, clinical pregnancy, and live birth in group A when compared with subgroup B2.
Conclusion: Higher rates of pregnancy and live birth were achieved in day-3 ET after three days of progesterone administration in FET cycles.
Key words: Endometrium, Embryo transfer, Pregnancy, Live birth, Progesterone
Effect of vitrification on morphology and in-vitro maturation outcome of human immature oocytes
Background. In assisted reproductive techniques, 85% retrieved oocytes are mature, and the rest are immature. These immature oocytes may be matured in vitro, and used in subsequent in vitro fertilization program. The purpose of this study was to determine the maturation capacity and morphology of human immature oocytes in both fresh and vitrified-thawed, in vitro matured oocytes with regard to the maternal age and cause of infertility. Materials & Methods. The first group of immature oocytes (n=103) were directly matured in vitro (fIVM), and the second group (n=102) were vitrified and stored in liquid nitrogen. After thawing, the samples underwent in vitro maturation (vIVM). Oocyte maturation was assessed by the presence of the 1st polar body and pronuclei. After 48 h incubation, each matured oocyte was assessed for ooplasm color, periviteline space normality and shape regularity. Results. After retrieval, 27% oocytes were immature (9.5 % metaphase I and 17.5% germinal vesicle stage). The rate of maturation of fIVM (61.2%) was significantly higher than that of vIVM (33.3%). The percentage of maturation in women under age of 30 was higher in both fIVM and vIVM. The maturation rate after IVM was higher in patients with male infertility than in those suffering of ovarian infertility. Conclusion. Vitrification is a suitable technique for preservation of immature oocytes, especially at the germinal vesicle stage, in stimulated ovarian cycles. It should be noted that the maturation outcome of oocytes at germinal vesicle stage was better than that of metaphase I oocytes. Therefore, we recommend vitrifying germinal vesicle stage oocytes for subsequent in vitro maturation
Impairment of sperm efficiency in mice following short-term nano-titanium dioxide exposure: An experimental study
Background: Titanium dioxide nanoparticles (TiO2NPs) are widely used in many compounds. Recent evidence has displayed some cytotoxic effects of TiO2NPs on male reproduction.
Objective: The effects of TiO2NP administration on sperm parameters and chromatin and seminiferous histopathology of male mice were investigated.
Materials and Methods: In this experimental study, 32 NMRI male mice (35 ± 3 gr, 8-12-week-old) were divided into four groups (n = 8/each): treated groups were fed orally with 2.5 (group I), 5 (group II) and 10 (group III) mg/kg/day TiO2NPs for 40 days and the control group received phosphate buffered saline. Sperm parameters, DNA integrity and chromatin quality were assessed using chromomycin A3, aniline blue, toluidine blue staining and TUNEL. Hematoxylin eosin staining was performed to measure spermatogenic cells and the total diameter of seminiferous tubules. Also, sex hormone and malondyaldehyde levels were measured.
Results: Abnormal sperm tails rose in group III (28.87 ± 4.91) in comparison with the control group (12.75 ± 3.95). However, chromomycin A3 staining and TUNEL showed higher levels in group III in comparison with the control group, whereas aniline blue and toluidine blue staining showed no differences. A significantly lower spermatogenesis index and lumen parameters were observed in group III. Leydig cell numbers, cellular diameters and the area of the seminiferous tubules were lower in the treated groups. The testosterone level was also lower in these groups and the percentage of malondyaldehyde in the seminal fluid was higher.
Conclusion: Exact mechanisms of TiO2NPs are not clear; however, cytotoxic and genotoxic effects of TiO2NPs may relate to oxidative stress. Given their widespread use, TiO2NPs should be a public health focus of attention.
Key words: Titanium dioxide, Spermatogenesis, Histology, Mouse, Chromatin, TUNEL
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background:
Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease.
Methods:
GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden.
Findings:
The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years and 75 years and older.
Interpretation:
Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public
- …
