371 research outputs found
Majorana Neutrino, the Size of Extra Dimensions, and Neutrinoless Double Beta Decay
The problem of Majorana neutrino mass generated in
Arkani-Hamed--Dimopoulos-Dvali model with n extra spatial dimensions is
discussed. Taking into account constraints on neutrino masses coming from
cosmological observations, it is possible to obtain lower limits on the size of
extra dimensions as large as 10^{-6} mm. In the case of n=4 it is easy to lower
the fundamental scale of gravity from the Planck energy to electroweak scale
\~TeV without imposing any additional constraints. A link between the half-life
of neutrinoless double beta decay and the size of extra dimensions is
discussed.Comment: 5 pages, 1 figure, using RevTEX. Units conversion correcte
Confusing non-standard neutrino interactions with oscillations at a neutrino factory
Most neutrino mass theories contain non-standard interactions (NSI) of
neutrinos which can be either non-universal (NU) or flavor-changing (FC). We
study the impact of such interactions on the determination of neutrino mixing
parameters at a neutrino factory using the so-called ``golden channels''
\pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain
combination of FC interactions in neutrino source and earth matter can give
exactly the same signal as oscillations arising due to \theta_{13}. This
implies that information about \theta_{13} can only be obtained if bounds on
NSI are available. Taking into account the existing bounds on FC interactions,
this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders
of magnitude. A near detector at a neutrino factory offers the possibility to
obtain stringent bounds on some NSI parameters. Such near site detector
constitutes an essential ingredient of a neutrino factory and a necessary step
towards the determination of \theta_{13} and subsequent study of leptonic CP
violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in
Phs. Rev. D, references adde
Neutrino masses: From fantasy to facts
Theory suggests the existence of neutrino masses, but little more. Facts are
coming close to reveal our fantasy: solar and atmospheric neutrino data
strongly indicate the need for neutrino conversions, while LSND provides an
intriguing hint. The simplest ways to reconcile these data in terms of neutrino
oscillations invoke a light sterile neutrino in addition to the three active
ones. Out of the four neutrinos, two are maximally-mixed and lie at the LSND
scale, while the others are at the solar mass scale. These schemes can be
distinguished at neutral-current-sensitive solar & atmospheric neutrino
experiments. I discuss the simplest theoretical scenarios, where the lightness
of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and
the generation of & all follow
naturally from the assumed lepton-number symmetry and its breaking. Although
the most likely interpretation of the present data is in terms of
neutrino-mass-induced oscillations, one still has room for alternative
explanations, such as flavour changing neutrino interactions, with no need for
neutrino mass or mixing. Such flavour violating transitions arise in theories
with strictly massless neutrinos, and may lead to other sizeable flavour
non-conservation effects, such as , conversion in
nuclei, unaccompanied by neutrino-less double beta decay.Comment: 33 pages, latex, 16 figures. Invited Talk at Ioannina Conference,
Symmetries in Intermediate High Energy Physics and its Applications, Oct.
1998, to be published by Springer Tracts in Modern Physics. Festschrift in
Honour of John Vergados' 60th Birthda
Neutrino Masses and Lepton Flavour Violation in Thick Brane Scenarios
We address the issue of lepton flavour violation and neutrino masses in the
``fat-brane'' paradigm, where flavour changing processes are suppressed by
localising different fermion field wave-functions at different positions (in
the extra dimensions) in a thick brane. We study the consequences of
suppressing lepton number violating charged lepton decays within this scenario
for lepton masses and mixing angles. In particular, we find that charged lepton
mass matrices are constrained to be quasi-diagonal. We further consider whether
the same paradigm can be used to naturally explain small Dirac neutrino masses
by considering the existence of three right-handed neutrinos in the brane, and
discuss the requirements to obtain phenomenologically viable neutrino masses
and mixing angles. Finally, we examine models where neutrinos obtain a small
Majorana mass by breaking lepton number in a far away brane and show that, if
the fat-brane paradigm is the solution to the absence of lepton number
violating charged lepton decays, such models predict, in the absence of flavour
symmetries, that charged lepton flavour violation will be observed in the next
round of rare muon/tau decay experiments.Comment: 33 pages, 9 eps figure
Supernova Bounds on Majoron-emitting decays of light neutrinos
Neutrino masses arising from the spontaneous violation of ungauged
lepton-number are accompanied by a physical Goldstone boson, generically called
Majoron. In the high-density supernova medium the effects of Majoron-emitting
neutrino decays are important even if they are suppressed in vacuo by small
neutrino masses and/or small off-diagonal couplings. We reconsider the
influence of these decays on the neutrino signal of supernovae in the light of
recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that
majoron-neutrino coupling constants in the range 3\times 10^{-7}\lsim g\lsim
2\times 10^{-5} or g \gsim 3 \times 10^{-4} are excluded by the observation
of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury
Neutrino Observatory to detect majoron neutrino interactions in the case of a
future galactic supernova. We find that these experiments could probe majoron
neutrino interactions with improved sensitivity.Comment: 28 pages, 5 figure
Neutrino Masses, Mixing and New Physics Effects
We introduce a parametrization of the effects of radiative corrections from
new physics on the charged lepton and neutrino mass matrices, studying how
several relevant quantities describing the pattern of neutrino masses and
mixing are affected by these corrections. We find that the ratio omega = sin
theta / tan theta_atm is remarkably stable, even when relatively large
corrections are added to the original mass matrices. It is also found that if
the lightest neutrino has a mass around 0.3 eV, the pattern of masses and
mixings is considerably more stable under perturbations than for a lighter or
heavier spectrum. We explore the consequences of perturbations on some flavor
relations given in the literature. In addition, for a quasi-degenerate neutrino
spectrum it is shown that: (i) starting from a bi-maximal mixing scenario, the
corrections to the mass matrices keep tan theta_atm very close to unity while
they can lower tan theta_sol to its measured value; (ii) beginning from a
scenario with a vanishing Dirac phase, corrections can induce a Dirac phase
large enough to yield CP violation observable in neutrino oscillations.Comment: 14 pages, 21 figures. Uses RevTeX4. Added several comments and
references. Final version to appear in PR
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector
A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)
- …
