1,194 research outputs found

    Reconstruction for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures

    Full text link
    Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their physics goals. In liquid argon time projection chambers (TPCs) the charged particles from neutrino interactions produce ionization electrons which drift in an electric field towards a series of collection wires, and the signal on the wires is used to reconstruct the interaction. The MicroBooNE detector currently collecting data at Fermilab has 8000 wires, and planned future experiments like DUNE will have 100 times more, which means that the time required to reconstruct an event will scale accordingly. Modernization of liquid argon TPC reconstruction code, including vectorization, parallelization and code portability to GPUs, will help to mitigate these challenges. The liquid argon TPC hit finding algorithm within the \texttt{LArSoft}\xspace framework used across multiple experiments has been vectorized and parallelized. This increases the speed of the algorithm on the order of ten times within a standalone version on Intel architectures. This new version has been incorporated back into \texttt{LArSoft}\xspace so that it can be generally used. These methods will also be applied to other low-level reconstruction algorithms of the wire signals such as the deconvolution. The applications and performance of this modernized liquid argon TPC wire reconstruction will be presented

    Parallelized and Vectorized Tracking Using Kalman Filters with CMS Detector Geometry and Events

    Full text link
    The High-Luminosity Large Hadron Collider at CERN will be characterized by greater pileup of events and higher occupancy, making the track reconstruction even more computationally demanding. Existing algorithms at the LHC are based on Kalman filter techniques with proven excellent physics performance under a variety of conditions. Starting in 2014, we have been developing Kalman-filter-based methods for track finding and fitting adapted for many-core SIMD processors that are becoming dominant in high-performance systems. This paper summarizes the latest extensions to our software that allow it to run on the realistic CMS-2017 tracker geometry using CMSSW-generated events, including pileup. The reconstructed tracks can be validated against either the CMSSW simulation that generated the hits, or the CMSSW reconstruction of the tracks. In general, the code's computational performance has continued to improve while the above capabilities were being added. We demonstrate that the present Kalman filter implementation is able to reconstruct events with comparable physics performance to CMSSW, while providing generally better computational performance. Further plans for advancing the software are discussed

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Observation of Two Excited B⁺c_{c} States and Measurement of the B⁺c_{c}(2S) Mass in pp Collisions at √s = 13 TeV

    Get PDF

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore