21 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Combination of Aronia, Red Ginseng, Shiitake Mushroom and Nattokinase Potentiated Insulin Secretion and Reduced Insulin Resistance with Improving Gut Microbiome Dysbiosis in Insulin Deficient Type 2 Diabetic Rats

    No full text
    The combination of freeze-dried aronia, red ginseng, ultraviolet-irradiated shiitake mushroom and nattokinase (AGM; 3.4:4.1:2.4:0.1) was examined to evaluate its effects on insulin resistance, insulin secretion and the gut microbiome in a non-obese type 2 diabetic animal model. Pancreatectomized (Px) rats were provided high fat diets supplemented with either (1) 0.5 g AGM (AGM-L), (2) 1 g AGM (AGM-H), (3) 1 g dextrin (control), or (4) 1 g dextrin with 120 mg metformin (positive-control) per kg body weight for 12 weeks. AGM (1 g) contained 6.22 mg cyanidin-3-galactose, 2.5 mg ginsenoside Rg3 and 244 mg β-glucan. Px rats had decreased bone mineral density in the lumbar spine and femur and lean body mass in the hip and leg compared to the normal-control and AGM-L and AGM-H prevented the decrease. Visceral fat mass was lower in the control group than the normal-control group and its decrease was smaller with AGM-L and AGM-H. HOMA-IR was lower in descending order of the control, positive-control, AGM-L, AGM-H and normal-control groups. Glucose tolerance deteriorated in the control group and was improved by AGM-L and AGM-H more than in the positive-control group. Glucose tolerance is associated with insulin resistance and insulin secretion. Insulin tolerance indicated insulin resistance was highly impaired in diabetic rats, but it was improved in the ascending order of the positive-control, AGM-L and AGM-H. Insulin secretion capacity, measured by hyperglycemic clamp, was much lower in the control group than the normal-control group and it was improved in the ascending order of the positive-control, AGM-L and AGM-H. Diabetes modulated the composition of the gut microbiome and AGM prevented the modulation of gut microbiome. In conclusion, AGM improved glucose metabolism by potentiating insulin secretion and reducing insulin resistance in insulin deficient type 2 diabetic rats. The improvement of diabetic status alleviated body composition changes and prevented changes of gut microbiome composition

    Thermal stability and Young's modulus of mechanically exfoliated flexible mica

    No full text
    In recent years, mica has been successfully used as a substrate for the growth of flexible epitaxial ferroelectric oxide thin films. Here, we systematically investigated the flexibility of mica in terms of its thickness, repeated bending/unbending, extremely hot/cold conditions, and successive thermal cycling. A 20-μm-thick sheet of mica is flexible even up to the bending radius of 5 mm, and it is durable for 20,000 cycles of up- and down-bending. In addition, the mica shows flexibility at 10 and 773 K, and thermal cycling stability for the temperature variation of ca. 400 K. Compared with the widely used flexible polyimide, mica has a significantly higher Young's modulus (ca. 5.4 GPa) and negligible hysteresis in the force-displacement curve. These results show that mica should be a suitable substrate for piezoelectric energy-harvesting applications of ferroelectric oxide thin films at extremely low and high temperatures. © 2018 Korean Physical Society1

    Fermentation of Blackberry with L. plantarum JBMI F5 Enhance the Protection Effect on UVB-Mediated Photoaging in Human Foreskin Fibroblast and Hairless Mice through Regulation of MAPK/NF-κB Signaling

    No full text
    Chronic and extensive exposure of ultraviolet (UV)-irradiation causes human skin sunburn, inflammation, or photoaging, which is associated with downregulated collagen synthesis. This study investigated the effects of fermented blackberry (Rubus fruticosus B., FBB) by Lactobacillus plantarum JBMI F5 (LP) on UVB-induced photoaging in human foreskin fibroblast (Hs68) as well as in SKH-1 hairless mice. FBB pretreatment inhibited UVB-mediated type-1 procollagen degradation, matrix metalloproteinase (MMP)-1 and MMP-2 protein expression, and suppressed nuclear factor-κB (NF-κB) activation as well as mitogen-activated protein kinase (MAPK) phosphorylation in Hs68. In addition, FBB administration diminished the wrinkle formation in dorsal skin and epidermal thickening in UVB-irradiated hairless mice. Moreover, UVB-induced Type-1 procollagen reduction and antioxidant enzyme inactivation were reversed by FBB administration. These results suggest that FBB may have antiphotoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of reactive oxygen species and related MAPK and NF-κB signaling. Therefore, FBB can be a potential candidate for protecting skin aging against UV irradiation

    Identification of VWA5A as a novel biomarker for inhibiting metastasis in breast cancer by machine-learning based protein prioritization

    No full text
    Abstract Distant metastasis is the leading cause of death in breast cancer (BC). The timing of distant metastasis differs according to subtypes of BCs and there is a need for identification of biomarkers for the prediction of early and late metastasis. To identify biomarker candidates whose abundance level can discriminate metastasis types, we performed a high-throughput proteomics assay using tissue samples from BCs with no metastasis, late metastasis, and early metastasis, processed data with machine learning-based feature selection, and found that low VWA5A could be responsible for shorter duration of metastasis-free interval. Low expression of VWA5A gene in METABRIC cohort was associated with poor survival in BCs, especially in hormone receptor (HR)-positive BCs. In-vitro experiments confirmed tumor suppressive effect of VWA5A on BCs in HR+ and triple-negative BC cell lines. We found that expression of VWA5A can be assessed by immunohistochemistry (IHC) on archival tissue samples. Decreasing nuclear expression of VWA5A was significantly associated with advanced T stage and lymphatic invasion in consecutive BCs of all subtypes. We discovered lower expression of VWA5A as the potential biomarker for metastasis-prone BCs, and our results support the clinical utility of VWA5A IHC, as an adjunctive tools for prognostication of BCs

    Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds

    No full text
    corecore