46 research outputs found

    The effectiveness of ENAR® for the treatment of chronic neck pain in Australian adults: a preliminary single-blind, randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current evidence on electrotherapies for the management of chronic neck pain is either lacking or conflicting. New therapeutic devices being introduced to the market should be investigated for their effectiveness and efficacy. The ENAR<sup>® </sup>(Electro Neuro Adaptive Regulator) therapy device combines Western biofeedback with Eastern energy medicine.</p> <p>Methods</p> <p>A small, preliminary randomised and controlled single-blinded trial was conducted on 24 participants (ten males, 14 females) between the ages of 18 to 50 years (median age of 40.5) Consent was obtained and participants were randomly allocated to one of three groups – ENAR, Transcutaneous Electrical Nerve Stimulation (TENS), or control therapy – to test the hypothesis that ENAR therapy would result in superior pain reduction/disability and improvements in neck function compared with TENS or control intervention. The treatment regimen included twelve 15-minute treatment sessions over a six week period, followed by two assessment periods. Visual Analogue Scale (VAS) pain scores, Neck Disability Index (NDI) scores, Patient Specific Functional Scale (PSFS) scores and Short Form 36v1 (SF-36) quality of life scores reported by participants were collected at each of the assessments points throughout the trial (0, 6, 12, 18 and 24 weeks).</p> <p>Results</p> <p>Eligible participants (n = 30) were recruited and attended clinic visits for 6 months from the time of randomisation. Final trial sample (n = 24) comprised 9 within the ENAR group, 7 within the TENS group and 8 within the control group. With an overall study power of 0.92, the ENAR group showed a decrease in mean pain score from measurement at time zero (5.0 ± 0.79 95%CI) to the first follow-up measurement at six weeks (1.4 ± 0.83 95%CI). Improvement was maintained until week 24 (1.75 ± 0.9 95%CI). The TENS and control groups showed consistent pain levels throughout the trial (3.4 ± 0.96 95%CI and 4.1 ± 0.9 95%CI respectively). Wald analysis for pain intensity was significant for the ENAR group (p = 0.01). Six month NDI scores showed the disability level of the ENAR group (11.3 ± 4.5 95%CI) was approximately half that of either the TENS (22.9 ± 4.8 95%CI) or the control (29.4 ± 4.5 95%CI) groups. NDI analysis using the Wald method, indicated significant reductions in disability only for the ENAR group (p = 0.022). PSFS results also demonstrated significantly better performance of ENAR (p = 0.001) compared to both alternative interventions. Differential means analysis of the SF-36 results favoured ENAR for all of the subscales. Six of the initial 30 participants discontinued the trial protocol.</p> <p>Conclusion</p> <p>ENAR therapy participants reported a significant reduction in the intensity of neck pain (VAS) and disability (NDI), as well as a significant increased function (PSFS) and overall quality of life (SF-36) than TENS or control intervention participants. Due to the modest sample size and restricted cohort characteristics, future larger and more comprehensive trials are required to better evaluate the potential efficacy of the ENAR device in a more widely distributed sample population.</p> <p>Trial Registration</p> <p>This study has been registered with the Australian Clinical Trials Registry (ACTR): ACTRN012606000438550.</p

    The higher education impact agenda, scientific realism and policy change: the case of electoral integrity in Britain

    Get PDF
    Pressures have increasingly been put upon social scientists to prove their economic, cultural and social value through ‘impact agendas’ in higher education. There has been little conceptual and empirical discussion of the challenges involved in achieving impact and the dangers of evaluating it, however. This article argues that a critical realist approach to social science can help to identify some of these key challenges and the institutional incompatibilities between impact regimes and university research in free societies. These incompatibilities are brought out through an autobiographical ‘insider-account’ of trying to achieve impact in the field of electoral integrity in Britain. The article argues that there is a more complex relationship between research and the real world which means that the nature of knowledge might change as it becomes known by reflexive agents. Secondly, the researchers are joined into social relations with a variety of actors, including those who might be the object of study in their research. Researchers are often weakly positioned in these relations. Some forms of impact, such as achieving policy change, are therefore exceptionally difficult as they are dependent on other actors. Strategies for trying to achieve impact are drawn out such as collaborating with civil society groups and parliamentarians to lobby for policy change

    Effectiveness of manual therapies: the UK evidence report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this report is to provide a succinct but comprehensive summary of the scientific evidence regarding the effectiveness of manual treatment for the management of a variety of musculoskeletal and non-musculoskeletal conditions.</p> <p>Methods</p> <p>The conclusions are based on the results of systematic reviews of randomized clinical trials (RCTs), widely accepted and primarily UK and United States evidence-based clinical guidelines, plus the results of all RCTs not yet included in the first three categories. The strength/quality of the evidence regarding effectiveness was based on an adapted version of the grading system developed by the US Preventive Services Task Force and a study risk of bias assessment tool for the recent RCTs.</p> <p>Results</p> <p>By September 2009, 26 categories of conditions were located containing RCT evidence for the use of manual therapy: 13 musculoskeletal conditions, four types of chronic headache and nine non-musculoskeletal conditions. We identified 49 recent relevant systematic reviews and 16 evidence-based clinical guidelines plus an additional 46 RCTs not yet included in systematic reviews and guidelines.</p> <p>Additionally, brief references are made to other effective non-pharmacological, non-invasive physical treatments.</p> <p>Conclusions</p> <p>Spinal manipulation/mobilization is effective in adults for: acute, subacute, and chronic low back pain; migraine and cervicogenic headache; cervicogenic dizziness; manipulation/mobilization is effective for several extremity joint conditions; and thoracic manipulation/mobilization is effective for acute/subacute neck pain. The evidence is inconclusive for cervical manipulation/mobilization alone for neck pain of any duration, and for manipulation/mobilization for mid back pain, sciatica, tension-type headache, coccydynia, temporomandibular joint disorders, fibromyalgia, premenstrual syndrome, and pneumonia in older adults. Spinal manipulation is not effective for asthma and dysmenorrhea when compared to sham manipulation, or for Stage 1 hypertension when added to an antihypertensive diet. In children, the evidence is inconclusive regarding the effectiveness for otitis media and enuresis, and it is not effective for infantile colic and asthma when compared to sham manipulation.</p> <p>Massage is effective in adults for chronic low back pain and chronic neck pain. The evidence is inconclusive for knee osteoarthritis, fibromyalgia, myofascial pain syndrome, migraine headache, and premenstrual syndrome. In children, the evidence is inconclusive for asthma and infantile colic.</p

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100&nbsp;km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100&nbsp;TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore