56 research outputs found

    Structural Biology of Peanut Allergens

    Get PDF
    Peanuts are a cause of one of the most common food allergies. Allergy to peanuts not only affects a significant fraction of the population, but it is relatively often associated with strong reactions in sensitized individuals. Peanut and tree nut allergies, which start in childhood are often persistent and continue through life, as opposed to other food allergies that resolve with age. Cherefore, peanut allergens are one of the most intensively studied food allergens. In this review we focus on the structural studies of peanut allergens. Despite the fact that these allergens are attracting a lot of interest and several of them have had their structures experimentally determined, still some molecular properties of peanut allergens are not well understood. Peanut allergens like other allergens belong to just a few protein families. Allergens from the cupin superfamily (Ara h 1 and Ara h 3), 2S albumins (Arah 2 and Ara h 6), Ara h 8 (pathogenesis related class-10 protein) and Ara h 5 (profilin) are relatively well characterized in terms of their 3D structures. However some peanut allergens like Ara h 7 (2S albumin), Ara h 9 (nonspecific lipid-transfer protein), and especially oleosins (Ara h 10 and Ara h 11) and defensins (Ara h 12 and Ara h 13), still are waiting for such characterization

    Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C10036, doi:10.1029/2011JC007035.Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.Funding was provided through the Office of Naval Research Ripples DRI, U.S. Geological Survey Coastal and Marine Geology Program, and National Science Foundation

    Characterizing wave- and current- induced bottom shear stress : U.S. middle Atlantic continental shelf

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Continental Shelf Research 52 (2013): 73-86, doi:10.1016/j.csr.2012.10.012.Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.P.S. Dalyander was supported by the U.S. Geological Survey Mendenhall Research Fellowship Program

    Intensive Case Management for Severe Mental Illness

    Get PDF

    Community Informant Explanations for Unusual Neighborhood Rates of Child Maltreatment Reports

    No full text
    This study explored perceptions of community informants on socioenvironmental factors that explain why rates of child maltreatment reporting are different in neighborhoods with similar population characteristics. This study used data from the SoCal Neighborhoods and Child Welfare study, a multiphase, mixed-methods study of neighborhoods in Los Angeles and San Diego counties. Semistructured qualitative interviews with key informants (N = 28) in 22 census tracts explored factors that account for differences in maltreatment rates among sociodemographically similar neighborhoods. Thematic content analysis revealed three themes regarding neighborhood contributors to maltreatment behaviors and reporting: (a) community norms and values, (b) community resources and providers, and (c) housing dynamics and built environment. Findings indicate complexity in forces that affect maltreatment behavior and reporting. Adding to research on neighborhood social dynamics and child maltreatment, findings suggest that composite indicators of maltreatment within neighborhoods are affected by maltreatment behaviors and the definition, recognition, and reporting of maltreatment
    • …
    corecore