116 research outputs found

    Effect of changing the fine particle mass of inhaled beclomethasone dipropionate on intrapulmonary deposition and pharmacokinetics

    Get PDF
    AbstractReformulation of beclomethasone dipropionate (BDP) in the chlorofluorocarbon (CFC)-free propellant hydrofluoroalkane-134a (HFA) gave the opportunity to produce a solution formulation that provides a greater total mass of fine drug particles than the current CFC suspension metered dose inhaler (MDI). The HFA-BDP MDI was studied in three pharmacokinetic trials in asthmatic patients. Serum levels of BDP plus metabolites [total beclomethasone (total BOH) assay] were used to test whether the increased fine particle mass of HFA-BDP would result in improved intrapulmonary deposition and subsequent differences in serum profiles. Serum levels, maximum serum concentrations and area under the serum concentration-time curves of total BOH following both single and multiple doses of HFA-BDP were similar to those obtained with approximately twice the dose of CFC-BDP. The observed lower bioavailability of CFC-BDP compared with HFA-BDP could be explained if most of each inhaled dose from the CFC-BDP MDI was swallowed and absorbed from the gastrointestinal tract, while most of each inhaled dose from the HFA-BDP MDI was absorbed from the lungs. Deposition studies have confirmed this explanation. These results suggest that asthmatic patients can be treated with lower total daily doses of drug from HFA-BDP extrafine aerosol than from CFC-BDP

    Geomagnetic storm dependence on the solar flare class

    Full text link
    Content. Solar flares are often used as precursors of geomagnetic storms. In particular, Howard and Tappin (2005) recently published in A&A a dependence between X-ray class of solar flares and Ap and Dst indexes of geomagnetic storms which contradicts to early published results. Aims. We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. Methods. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Results. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.Comment: 3 pages, 1 tabl

    Magnetothemopower study of quasi two-dimensional organic conductor α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4

    Full text link
    We have used a low-frequency magneto-thermopower (MTEP) method to probe the high magnetic field ground state behavior of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 along all three principal crystallographic axes at low temperatures. The thermopower tensor coefficients (Sxx,SyxS_{xx}, S_{yx} and SzzS_{zz}) have been measured to 30 T, beyond the anomalous low temperature, field-induced transition at 22.5 T. We find a significant anisotropy in the MTEP signal, and also observe large quantum oscillations associated with the de Haas - van Alphen effect. The anisotropy indicates that the ground state properties are clearly driven by mechanisms that occur along specific directions for the in-plane electronic structure. Both transverse and longitudinal magnetothermopower show asymptotic behavior in field, which can be explained in terms of magnetic breakdown of compensated closed orbits.Comment: 9 pages, 10 figure

    Self-consistent approach for excitons in quantum wells

    Full text link
    We introduce a computationally efficient approach to calculating the characteristics of excitons in quantum wells. In this approach we derive a system of self-consistent equations describing the motion of an electron-hole pair. The motion in the growth direction of the quantum well in this approach is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. The approach is applied to shallow quantum wells, for which we obtained an analytical expression for the exciton binding energy and the ground state eigenfunction. Our results are in excellent agreement with standard variational calculations, but require greatly reduced computational effort.Comment: RevTeX4, 13 pages, 4 figures, submitted to Phys. Rev B Changed content, added references, correct typo

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Blended Clustering for Health Data Mining

    Full text link
    Exploratory data analysis using data mining techniques is becoming more popular for investigating subtle relationships in health data, for which direct data collection trials would not be possible. Health data mining involving clustering for large complex data sets in such cases is often limited by insufficient key indicative variables. When a conventional clustering technique is then applied, the results may be too imprecise, or may be inappropriately clustered according to expectations. This paper suggests an approach which can offer greater range of choice for generating potential clusters of interest, from which a better outcome might in turn be obtained by aggregating the results. An example use case based on health services utilization characterization according to socio-demographic background is discussed and the blended clustering approach being taken for it is described

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore